Suppr超能文献

Wnt/β-catenin 信号指导第一和第二心源性心室心肌细胞的区域性扩张。

Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes.

机构信息

Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA.

出版信息

Development. 2013 Oct;140(20):4165-76. doi: 10.1242/dev.099325. Epub 2013 Sep 11.

Abstract

In mammals, cardiac development proceeds from the formation of the linear heart tube, through complex looping and septation, all the while increasing in mass to provide the oxygen delivery demands of embryonic growth. The developing heart must orchestrate regional differences in cardiomyocyte proliferation to control cardiac morphogenesis. During ventricular wall formation, the compact myocardium proliferates more vigorously than the trabecular myocardium, but the mechanisms controlling such regional differences among cardiomyocyte populations are not understood. Control of definitive cardiomyocyte proliferation is of great importance for application to regenerative cell-based therapies. We have used murine and human pluripotent stem cell systems to demonstrate that, during in vitro cellular differentiation, early ventricular cardiac myocytes display a robust proliferative response to β-catenin-mediated signaling and conversely accelerate differentiation in response to inhibition of this pathway. Using gain- and loss-of-function murine genetic models, we show that β-catenin controls ventricular myocyte proliferation during development and the perinatal period. We further demonstrate that the differential activation of the Wnt/β-catenin signaling pathway accounts for the observed differences in the proliferation rates of the compact versus the trabecular myocardium during normal cardiac development. Collectively, these results provide a mechanistic explanation for the differences in localized proliferation rates of cardiac myocytes and point to a practical method for the generation of the large numbers of stem cell-derived cardiac myocytes necessary for clinical applications.

摘要

在哺乳动物中,心脏发育从线性心脏管的形成开始,经历复杂的环化和分隔,同时不断增加质量以满足胚胎生长的氧气输送需求。发育中的心脏必须协调心肌细胞增殖的区域差异,以控制心脏形态发生。在心室壁形成过程中,致密心肌比小梁心肌更剧烈地增殖,但控制心肌细胞群体中这种区域差异的机制尚不清楚。对确定的心肌细胞增殖的控制对于再生细胞为基础的治疗方法的应用非常重要。我们使用鼠和人多能干细胞系统证明,在体外细胞分化过程中,早期心室心肌细胞对β-catenin 介导的信号表现出强烈的增殖反应,相反,抑制该途径会加速分化。使用获得和丧失功能的鼠遗传模型,我们表明β-catenin 在发育和围生期控制心室心肌细胞的增殖。我们进一步证明,Wnt/β-catenin 信号通路的差异激活解释了正常心脏发育过程中致密心肌与小梁心肌增殖率的差异。总之,这些结果为心肌细胞局部增殖率的差异提供了机制解释,并为产生大量用于临床应用的干细胞衍生心肌细胞提供了一种实用方法。

相似文献

1
2
Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes.
Stem Cell Res Ther. 2018 Dec 7;9(1):338. doi: 10.1186/s13287-018-1086-8.
5
APC controls asymmetric Wnt/β-catenin signaling and cardiomyocyte proliferation gradient in the heart.
J Mol Cell Cardiol. 2015 Dec;89(Pt B):287-96. doi: 10.1016/j.yjmcc.2015.10.018. Epub 2015 Oct 19.
6
Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19812-7. doi: 10.1073/pnas.0605768103. Epub 2006 Dec 14.
7
Temporal modulation of β-catenin signaling by multicellular aggregation kinetics impacts embryonic stem cell cardiomyogenesis.
Stem Cells Dev. 2013 Oct 1;22(19):2665-77. doi: 10.1089/scd.2013.0007. Epub 2013 Jun 14.
10
Distinct phases of Wnt/β-catenin signaling direct cardiomyocyte formation in zebrafish.
Dev Biol. 2012 Jan 15;361(2):364-76. doi: 10.1016/j.ydbio.2011.10.032. Epub 2011 Nov 4.

引用本文的文献

3
Harnessing developmental cues for cardiomyocyte production.
Development. 2023 Aug 1;150(15). doi: 10.1242/dev.201483. Epub 2023 Aug 10.
4
Interferon hyperactivity impairs cardiogenesis in Down syndrome via downregulation of canonical Wnt signaling.
iScience. 2023 Jun 5;26(7):107012. doi: 10.1016/j.isci.2023.107012. eCollection 2023 Jul 21.
7
Modeling Human Heart Development and Congenital Defects Using Organoids: How Close Are We?
J Cardiovasc Dev Dis. 2022 Apr 21;9(5):125. doi: 10.3390/jcdd9050125.
8
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview.
Int J Mol Sci. 2022 Mar 16;23(6):3220. doi: 10.3390/ijms23063220.
9
Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes.
J Cardiovasc Dev Dis. 2022 Jan 27;9(2):43. doi: 10.3390/jcdd9020043.
10
Mettl14 Attenuates Cardiac Ischemia/Reperfusion Injury by Regulating Wnt1/β-Catenin Signaling Pathway.
Front Cell Dev Biol. 2021 Dec 16;9:762853. doi: 10.3389/fcell.2021.762853. eCollection 2021.

本文引用的文献

1
Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy.
Nat Med. 2013 Feb;19(2):193-201. doi: 10.1038/nm.3046. Epub 2013 Jan 13.
2
Mammalian heart renewal by pre-existing cardiomyocytes.
Nature. 2013 Jan 17;493(7432):433-6. doi: 10.1038/nature11682. Epub 2012 Dec 5.
3
Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10921-6. doi: 10.1073/pnas.1121236109. Epub 2012 Jun 18.
5
YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2394-9. doi: 10.1073/pnas.1116136109. Epub 2012 Jan 30.
6
Cardiac regeneration in left ventricular dysfunction: are we asking the right questions?
Eur J Heart Fail. 2012 Jan;14(1):1-4. doi: 10.1093/eurjhf/hfr160. Epub 2011 Dec 6.
7
Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial.
Lancet. 2011 Nov 26;378(9806):1847-57. doi: 10.1016/S0140-6736(11)61590-0. Epub 2011 Nov 14.
8
Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm.
Circ Res. 2011 Aug 5;109(4):360-4. doi: 10.1161/CIRCRESAHA.111.249540. Epub 2011 Jul 7.
9
Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size.
Science. 2011 Apr 22;332(6028):458-61. doi: 10.1126/science.1199010.
10
Transient regenerative potential of the neonatal mouse heart.
Science. 2011 Feb 25;331(6020):1078-80. doi: 10.1126/science.1200708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验