Suppr超能文献

前置运动神经元指令统计对等长足底屈曲运动输出变异性缩放的影响。

Influences of premotoneuronal command statistics on the scaling of motor output variability during isometric plantar flexion.

机构信息

Biomedical Engineering Laboratory, Department of Telecommunication and Control Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil.

出版信息

J Neurophysiol. 2013 Dec;110(11):2592-606. doi: 10.1152/jn.00073.2013. Epub 2013 Sep 11.

Abstract

This study focuses on neuromuscular mechanisms behind ankle torque and EMG variability during a maintained isometric plantar flexion contraction. Experimentally obtained torque standard deviation (SD) and soleus, medial gastrocnemius, and lateral gastrocnemius EMG envelope mean and SD increased with mean torque for a wide range of torque levels. Computer simulations were performed on a biophysically-based neuromuscular model of the triceps surae consisting of premotoneuronal spike trains (the global input, GI) driving the motoneuron pools of the soleus, medial gastrocnemius, and lateral gastrocnemius muscles, which activate their respective muscle units. Two types of point processes were adopted to represent the statistics of the GI: Poisson and Gamma. Simulations showed a better agreement with experimental results when the GI was modeled by Gamma point processes having lower orders (higher variability) for higher target torques. At the same time, the simulations reproduced well the experimental data of EMG envelope mean and SD as a function of mean plantar flexion torque, for the three muscles. These results suggest that the experimentally found relations between torque-EMG variability as a function of mean plantar flexion torque level depend not only on the intrinsic properties of the motoneuron pools and the muscle units innervated, but also on the increasing variability of the premotoneuronal GI spike trains when their mean rates increase to command a higher plantar flexion torque level. The simulations also provided information on spike train statistics of several hundred motoneurons that compose the triceps surae, providing a wide picture of the associated mechanisms behind torque and EMG variability.

摘要

本研究关注的是在维持等长足底屈曲收缩过程中,踝关节力矩和肌电图(EMG)变异性背后的神经肌肉机制。实验获得的力矩标准差(SD)和比目鱼肌、内侧腓肠肌和外侧腓肠肌 EMG 包络的均值和 SD 随着力矩的增加而增加,在广泛的力矩范围内都是如此。基于生物物理的三关节肌模型的计算机模拟由前运动神经元尖峰序列(全局输入,GI)驱动比目鱼肌、内侧腓肠肌和外侧腓肠肌的运动神经元池,从而激活它们各自的肌肉单元。采用两种类型的点过程来表示 GI 的统计特性:泊松和伽马。当 GI 由具有较高变异性(较高阶)的伽马点过程建模时,模拟与实验结果的一致性更好,用于更高的目标力矩。同时,模拟很好地再现了 EMG 包络均值和 SD 作为平均足底屈曲力矩的函数的实验数据,适用于这三个肌肉。这些结果表明,实验中发现的力矩-EMG 变异性与平均足底屈曲力矩水平之间的关系不仅取决于运动神经元池和受神经支配的肌肉单元的固有特性,还取决于前运动神经元 GI 尖峰序列的变异性随着其平均率的增加而增加,以命令更高的足底屈曲力矩水平。模拟还提供了组成三关节肌的几百个运动神经元的尖峰序列统计信息,为力矩和 EMG 变异性背后的相关机制提供了广泛的图景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验