Suppr超能文献

一个潜在的低维共同输入驱动一组运动神经元:一种概率性潜在状态空间模型。

A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

作者信息

Feeney Daniel F, Meyer François G, Noone Nicholas, Enoka Roger M

机构信息

Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado;

Department of Electrical Engineering, University of Colorado Boulder, Boulder, Colorado; and.

出版信息

J Neurophysiol. 2017 Oct 1;118(4):2238-2250. doi: 10.1152/jn.00274.2017. Epub 2017 Aug 2.

Abstract

Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions.

摘要

运动神经元似乎是由一个共同的输入信号激活的,该信号调节运动核中所有神经元的放电活动。神经生理学家已证实,量化共同输入信号的变异性具有难度,但对这种信号的特征描述可能会增进我们对激活信号在不同运动任务中如何变化的理解。当代量化运动神经元共同输入的方法依赖于将离散动作电位编译成连续时间序列,假设运动神经元池起到线性滤波器的作用,并且要求信号具有足够长的持续时间以便进行频率分析。我们引入了一种状态空间模型,其中运动神经元的放电活动被建模为非齐次泊松过程,并提出了一种方法来量化一个抽象的潜在轨迹,该轨迹代表运动神经元接收到的共同输入。该方法还近似了共同输入信号中突触噪声的变化。该模型通过四个数据集进行了验证:120个运动单位的模拟、一对具有提供抑制性反馈的闰绍细胞的积分发放神经元、10个积分发放神经元的放电活动以及等长自愿收缩期间同时活跃的运动单位的放电时间。模拟结果表明,潜在状态空间模型能够量化所有四种情况下共同输入信号的轨迹和变异性。与表征共同输入的累积脉冲序列方法相比,状态空间方法对共同输入电流的细节更敏感,并且受信号持续时间的影响较小。状态空间方法似乎能够检测出不同条件下共同输入信号中相当微小的变化。我们提出了一种状态空间模型,该模型明确描绘了发送到运动神经元的共同输入信号以及突触信号传输中固有的生理噪声。这是确定性状态空间模型首次应用于表示自愿收缩期间运动单位的放电特征。

相似文献

1
A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.
J Neurophysiol. 2017 Oct 1;118(4):2238-2250. doi: 10.1152/jn.00274.2017. Epub 2017 Aug 2.
4
The human motor neuron pools receive a dominant slow-varying common synaptic input.
J Physiol. 2016 Oct 1;594(19):5491-505. doi: 10.1113/JP271748. Epub 2016 Jun 21.
5
Decrease in force steadiness with aging is associated with increased power of the common but not independent input to motor neurons.
J Neurophysiol. 2018 Oct 1;120(4):1616-1624. doi: 10.1152/jn.00093.2018. Epub 2018 Jul 5.
6
Models of recruitment and rate coding organization in motor-unit pools.
J Neurophysiol. 1993 Dec;70(6):2470-88. doi: 10.1152/jn.1993.70.6.2470.
8
The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input.
J Appl Physiol (1985). 2015 Dec 1;119(11):1337-46. doi: 10.1152/japplphysiol.00255.2015. Epub 2015 Sep 24.
9
A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties.
Biol Cybern. 2006 Aug;95(2):97-112. doi: 10.1007/s00422-006-0082-8. Epub 2006 Jul 5.
10
Relationship between simulated common synaptic input and discharge synchrony in cat spinal motoneurons.
J Neurophysiol. 2001 Nov;86(5):2266-75. doi: 10.1152/jn.2001.86.5.2266.

引用本文的文献

1
Peripheral neural interfaces for reading high-frequency brain signals.
Nat Biomed Eng. 2025 Jun 27. doi: 10.1038/s41551-025-01445-1.
2
Flexible neural control of motor units.
Nat Neurosci. 2022 Nov;25(11):1492-1504. doi: 10.1038/s41593-022-01165-8. Epub 2022 Oct 10.
3
Force variability is mostly not motor noise: Theoretical implications for motor control.
PLoS Comput Biol. 2021 Mar 8;17(3):e1008707. doi: 10.1371/journal.pcbi.1008707. eCollection 2021 Mar.
4
Force control during submaximal isometric contractions is associated with walking performance in persons with multiple sclerosis.
J Neurophysiol. 2020 Jun 1;123(6):2191-2200. doi: 10.1152/jn.00085.2020. Epub 2020 Apr 29.
5
Differences in postural sway among healthy adults are associated with the ability to perform steady contractions with leg muscles.
Exp Brain Res. 2020 Feb;238(2):487-497. doi: 10.1007/s00221-019-05719-4. Epub 2020 Jan 20.
6
Remarkable hand grip steadiness in individuals with complete spinal cord injury.
Exp Brain Res. 2019 Dec;237(12):3175-3183. doi: 10.1007/s00221-019-05656-2. Epub 2019 Oct 8.
7
Dynamics of motor cortical activity during naturalistic feeding behavior.
J Neural Eng. 2019 Apr;16(2):026038. doi: 10.1088/1741-2552/ab0474. Epub 2019 Feb 5.
8
Poor estimates of motor variability are associated with longer grooved pegboard times for middle-aged and older adults.
J Neurophysiol. 2019 Feb 1;121(2):588-601. doi: 10.1152/jn.00543.2018. Epub 2018 Dec 12.
9
The modulation of force steadiness by electrical nerve stimulation applied to the wrist extensors differs for young and older adults.
Eur J Appl Physiol. 2019 Jan;119(1):301-310. doi: 10.1007/s00421-018-4025-6. Epub 2018 Oct 30.

本文引用的文献

1
Synaptic control of the shape of the motoneuron pool input-output function.
J Neurophysiol. 2017 Mar 1;117(3):1171-1184. doi: 10.1152/jn.00850.2016. Epub 2017 Jan 4.
2
Using Computational Neuroscience to Define Common Input to Spinal Motor Neurons.
Front Hum Neurosci. 2016 Jun 21;10:313. doi: 10.3389/fnhum.2016.00313. eCollection 2016.
3
The human motor neuron pools receive a dominant slow-varying common synaptic input.
J Physiol. 2016 Oct 1;594(19):5491-505. doi: 10.1113/JP271748. Epub 2016 Jun 21.
4
Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation.
J Neural Eng. 2016 Apr;13(2):026027. doi: 10.1088/1741-2560/13/2/026027. Epub 2016 Feb 29.
5
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data.
Neuron. 2016 Jan 20;89(2):285-99. doi: 10.1016/j.neuron.2015.11.037. Epub 2016 Jan 7.
6
The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input.
J Appl Physiol (1985). 2015 Dec 1;119(11):1337-46. doi: 10.1152/japplphysiol.00255.2015. Epub 2015 Sep 24.
7
Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units.
J Neurophysiol. 2015 Mar 1;113(5):1310-22. doi: 10.1152/jn.00777.2014. Epub 2014 Dec 4.
8
Common synaptic input to motor neurons, motor unit synchronization, and force control.
Exerc Sport Sci Rev. 2015 Jan;43(1):23-33. doi: 10.1249/JES.0000000000000032.
9
Dimensionality reduction for large-scale neural recordings.
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
10
The effective neural drive to muscles is the common synaptic input to motor neurons.
J Physiol. 2014 Aug 15;592(16):3427-41. doi: 10.1113/jphysiol.2014.273581. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验