Laboratoire matière et systèmes complexes, université Paris-Diderot, 10, rue Alice-Domon-et-Léonie-Duquet, 75013 Paris, France.
Orthop Traumatol Surg Res. 2013 Oct;99(6 Suppl):S356-65. doi: 10.1016/j.otsr.2013.07.004. Epub 2013 Sep 9.
Recent technical advances including digital imaging and particle image velocimetry can be used to extract the full range of embryonic movements that constitute the instantaneous 'morphogenetic fields' of a developing animal. The final shape of the animal results from the sum over time (integral) of the movements that make up the velocity fields of all the tissue constituents. In vivo microscopy can be used to capture the details of vertebrate development at the earliest embryonic stages. The movements thus observed can be quantitatively compared to physical models that provide velocity fields based on simple hypotheses about the nature of living matter (a visco-elastic gel). This approach has cast new light on the interpretation of embryonic movement, folding, and organisation. It has established that several major discontinuities in development are simple physical changes in boundary conditions. In other words, with no change in biology, the physical consequences of collisions between folds largely explain the morphogenesis of the major structures (such as the head). Other discontinuities result from changes in physical conditions, such as bifurcations (changes in physical behaviour beyond specific yield points). For instance, beyond a certain level of stress, a tissue folds, without any new gene being involved. An understanding of the physical features of movement provides insights into the levers that drive evolution; the origin of animals is seen more clearly when viewed under the light of the fundamental physical laws (Newton's principle, action-reaction law, changes in symmetry breaking scale). This article describes the genesis of a vertebrate embryo from the shapeless stage (round mass of tissue) to the development of a small, elongated, bilaterally symmetric structure containing vertebral precursors, hip and shoulder enlarges, and a head.
包括数字成像和粒子图像测速在内的最新技术进步可以用来提取构成动物胚胎瞬时“形态发生场”的胚胎运动的全部范围。动物的最终形状是由构成所有组织成分速度场的运动随时间(积分)的总和产生的。体内显微镜可以用于捕获最早胚胎阶段的脊椎动物发育的细节。因此,可以将观察到的运动与基于关于生命物质(粘弹性凝胶)性质的简单假设提供速度场的物理模型进行定量比较。这种方法为胚胎运动、折叠和组织的解释提供了新的视角。它已经确立了几个主要的发育不连续性是边界条件的简单物理变化。换句话说,在生物学不变的情况下,褶皱之间的碰撞的物理后果在很大程度上解释了主要结构(如头部)的形态发生。其他不连续性是由于物理条件的变化引起的,例如分叉(超出特定屈服点的物理行为变化)。例如,在达到一定的压力水平后,组织会发生折叠,而不会涉及任何新的基因。对运动的物理特征的理解为推动进化的杠杆提供了深入的了解;当从基本物理定律(牛顿定律、作用-反作用定律、对称破缺尺度的变化)的角度来看待动物的起源时,动物的起源变得更加清晰。本文描述了从无形状阶段(一团组织)到发育成一个小的、拉长的、双侧对称结构的过程,该结构包含椎骨前体、臀部和肩部增大以及头部。