Suppr超能文献

利用搜索技术优化约束环境下的改向行走指令。

Optimizing constrained-environment redirected walking instructions using search techniques.

机构信息

Miami University, Oxford.

出版信息

IEEE Trans Vis Comput Graph. 2013 Nov;19(11):1872-84. doi: 10.1109/TVCG.2013.88.

Abstract

A goal of redirected walking (RDW) is to allow large virtual worlds to be explored within small tracking areas. Generalized steering algorithms, such as steer-to-center, simply move the user toward locations that are considered to be collision free in most cases. The algorithm developed here, FORCE, identifies collision-free paths by using a map of the tracking area's shape and obstacles, in addition to a multistep, probabilistic prediction of the user's virtual path through a known virtual environment. In the present implementation, the path predictions describe a user's possible movements through a virtual store with aisles. Based on both the user's physical and virtual location / orientation, a search-based optimization technique identifies the optimal steering instruction given the possible user paths. Path prediction uses the map of the virtual world; consequently, the search may propose steering instructions that put the user close to walls if the user's future actions eventually lead away from the wall. Results from both simulated and real users are presented. FORCE identifies collision-free paths in 55.0 percent of the starting conditions compared to 46.1 percent for generalized methods. When considering only the conditions that result in different outcomes, redirection based on FORCE produces collision-free path 94.5 percent of the time.

摘要

转向步行(RDW)的目标是允许在小的跟踪区域内探索大型虚拟世界。一般的转向算法,如转向中心,只是将用户移动到在大多数情况下被认为是无碰撞的位置。这里开发的算法 FORCE 通过使用跟踪区域形状和障碍物的地图,以及对用户通过已知虚拟环境的虚拟路径的多步、概率预测,来识别无碰撞路径。在当前的实现中,路径预测描述了用户在具有过道的虚拟商店中的可能移动。基于用户的物理和虚拟位置/方向,基于搜索的优化技术根据可能的用户路径确定最佳转向指令。路径预测使用虚拟世界的地图;因此,如果用户的未来行动最终远离墙壁,搜索可能会建议将用户靠近墙壁的转向指令。呈现了来自模拟和真实用户的结果。与通用方法的 46.1%相比,FORCE 在 55.0%的起始条件下识别出无碰撞路径。当仅考虑导致不同结果的条件时,基于 FORCE 的重定向有 94.5%的时间产生无碰撞路径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验