Suppr超能文献

在联合脆弱模型中利用癌症复发史对死亡风险进行动态预测。

Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models.

作者信息

Mauguen Audrey, Rachet Bernard, Mathoulin-Pélissier Simone, MacGrogan Gaetan, Laurent Alexandre, Rondeau Virginie

机构信息

INSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France; Univ. Bordeaux, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France.

出版信息

Stat Med. 2013 Dec 30;32(30):5366-80. doi: 10.1002/sim.5980. Epub 2013 Sep 13.

Abstract

Evaluating the prognosis of patients according to their demographic, biological, or disease characteristics is a major issue, as it may be used for guiding treatment decisions. In cancer studies, typically, more than one endpoint can be observed before death. Patients may undergo several types of events, such as local recurrences and distant metastases, with death as the terminal event. Accuracy of clinical decisions may be improved when the history of these different events is considered. Thus, it may be useful to dynamically predict patients' risk of death using recurrence history. As previously applied within the framework of joint models for longitudinal and time to event data, we propose a dynamic prediction tool based on joint frailty models. Joint modeling accounts for the dependence between recurrent events and death, by the introduction of a random effect shared by the two processes. We estimate the probability of death between the prediction time t and a horizon t + w, conditional on information available at time t. Prediction can be updated with the occurrence of a new event. We proposed and compared three prediction settings, taking into account three different information levels. The proposed tools are applied to patients diagnosed with a primary invasive breast cancer and treated with breast-conserving surgery, followed for more than 10 years in a French comprehensive cancer center.

摘要

根据患者的人口统计学、生物学或疾病特征评估其预后是一个重要问题,因为这可用于指导治疗决策。在癌症研究中,通常在死亡前可观察到多个终点。患者可能经历多种类型的事件,如局部复发和远处转移,死亡为终末事件。考虑这些不同事件的发生过程可能会提高临床决策的准确性。因此,利用复发史动态预测患者的死亡风险可能是有用的。如先前在纵向数据和事件发生时间数据的联合模型框架中应用的那样,我们提出了一种基于联合脆弱模型的动态预测工具。联合建模通过引入两个过程共享的随机效应来考虑复发事件与死亡之间的相关性。我们根据时间t时可用的信息估计在预测时间t到时间范围t + w之间死亡的概率。随着新事件的发生,预测可以更新。我们提出并比较了三种预测设置,考虑了三种不同的信息水平。所提出的工具应用于在法国一家综合癌症中心接受保乳手术治疗且随访超过10年的原发性浸润性乳腺癌患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验