Suppr超能文献

利用微流控技术在微限制条件下进行肌动蛋白的分级自组装。

Hierarchical self-assembly of actin in micro-confinements using microfluidics.

机构信息

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

出版信息

Biomicrofluidics. 2012 Sep 13;6(3):34120. doi: 10.1063/1.4752245. eCollection 2012.

Abstract

We present a straightforward microfluidics system to achieve step-by-step reaction sequences in a diffusion-controlled manner in quasi two-dimensional micro-confinements. We demonstrate the hierarchical self-organization of actin (actin monomers-entangled networks of filaments-networks of bundles) in a reversible fashion by tuning the [Formula: see text] ion concentration in the system. We show that actin can form networks of bundles in the presence of [Formula: see text] without any cross-linking proteins. The properties of these networks are influenced by the confinement geometry. In square microchambers we predominantly find rectangular networks, whereas triangular meshes are predominantly found in circular chambers.

摘要

我们提出了一种简单的微流控系统,以在准二维微约束中以扩散控制的方式实现逐步的反应序列。通过调节系统中的[Formula: see text]离子浓度,我们以可逆的方式展示了肌动蛋白(肌动蛋白单体-缠结的纤维网络-束网络)的分级自组织。我们表明,在没有任何交联蛋白的情况下,肌动蛋白可以在[Formula: see text]存在的情况下形成束网络。这些网络的性质受约束几何形状的影响。在方形微腔中,我们主要发现矩形网络,而在圆形腔中主要发现三角形网格。

相似文献

1
Hierarchical self-assembly of actin in micro-confinements using microfluidics.
Biomicrofluidics. 2012 Sep 13;6(3):34120. doi: 10.1063/1.4752245. eCollection 2012.
3
Organization and dynamics of cross-linked actin filaments in confined environments.
Biophys J. 2023 Jan 3;122(1):30-42. doi: 10.1016/j.bpj.2022.11.2944. Epub 2022 Dec 2.
4
Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
Biomech Model Mechanobiol. 2015 Oct;14(5):1143-55. doi: 10.1007/s10237-015-0660-6. Epub 2015 Feb 24.
5
From branched networks of actin filaments to bundles.
Chemphyschem. 2009 Nov 9;10(16):2818-27. doi: 10.1002/cphc.200900615.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Triggering Cation-Induced Contraction of Cytoskeleton Networks via Microfluidics.
Front Phys. 2020 Nov;8. doi: 10.3389/fphy.2020.596699. Epub 2020 Nov 9.
8
Actin filament alignment causes mechanical hysteresis in cross-linked networks.
Soft Matter. 2021 Jun 9;17(22):5499-5507. doi: 10.1039/d1sm00412c.
9
Microfilaments in cellular and developmental processes.
Science. 1971 Jan 15;171(3967):135-43. doi: 10.1126/science.171.3967.135.
10
Actin filaments mediate Dictyostelium myosin assembly in vitro.
Proc Natl Acad Sci U S A. 1989 Aug;86(16):6161-5. doi: 10.1073/pnas.86.16.6161.

引用本文的文献

2
Large and stable: actin aster networks formed entropic forces.
Front Chem. 2022 Aug 25;10:899478. doi: 10.3389/fchem.2022.899478. eCollection 2022.
3
Triggering Cation-Induced Contraction of Cytoskeleton Networks via Microfluidics.
Front Phys. 2020 Nov;8. doi: 10.3389/fphy.2020.596699. Epub 2020 Nov 9.
4
Presegmentation Procedure Generates Smooth-Sided Microfluidic Devices: Unlocking Multiangle Imaging for Everyone?
ACS Omega. 2019 Dec 2;4(25):20972-20977. doi: 10.1021/acsomega.9b02139. eCollection 2019 Dec 17.
5
Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization.
mBio. 2019 Jun 18;10(3):e01237-19. doi: 10.1128/mBio.01237-19.
8
A self-filling microfluidic device for noninvasive and time-resolved single red blood cell experiments.
Biomicrofluidics. 2016 Oct 25;10(5):054121. doi: 10.1063/1.4966212. eCollection 2016 Sep.
9
Size-dependent control of colloid transport via solute gradients in dead-end channels.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):257-61. doi: 10.1073/pnas.1511484112. Epub 2015 Dec 29.
10
Real-time dynamics of emerging actin networks in cell-mimicking compartments.
PLoS One. 2015 Mar 18;10(3):e0116521. doi: 10.1371/journal.pone.0116521. eCollection 2015.

本文引用的文献

1
Mobility Gradient Induces Cross-Streamline Migration of Semiflexible Polymers.
ACS Macro Lett. 2012 May 15;1(5):541-545. doi: 10.1021/mz3000539. Epub 2012 Apr 10.
2
Polymer physics of the cytoskeleton.
Curr Opin Solid State Mater Sci. 2011 Oct 1;15(5):177-182. doi: 10.1016/j.cossms.2011.05.002.
3
Transformation of actoHMM assembly confined in cell-sized liposome.
Langmuir. 2011 Sep 20;27(18):11528-35. doi: 10.1021/la2016287. Epub 2011 Aug 24.
4
Mechanisms of neuronal growth cone guidance: an historical perspective.
Dev Neurobiol. 2011 Sep;71(9):795-800. doi: 10.1002/dneu.20908. Epub 2011 Jul 29.
5
Structure formation in active networks.
Nat Mater. 2011 Jun;10(6):462-8. doi: 10.1038/nmat3009. Epub 2011 Apr 24.
6
Nucleation geometry governs ordered actin networks structures.
Nat Mater. 2010 Oct;9(10):827-32. doi: 10.1038/nmat2855. Epub 2010 Sep 19.
7
Transiently crosslinked F-actin bundles.
Eur Biophys J. 2011 Jan;40(1):93-101. doi: 10.1007/s00249-010-0621-z. Epub 2010 Aug 24.
8
Actin bundling in plants.
Cell Motil Cytoskeleton. 2009 Nov;66(11):940-57. doi: 10.1002/cm.20389.
9
Effects of confinement on the self-organization of microtubules and motors.
Curr Biol. 2009 Jun 9;19(11):954-60. doi: 10.1016/j.cub.2009.04.027. Epub 2009 May 7.
10
An in vitro model system for cytoskeletal confinement.
Cell Motil Cytoskeleton. 2009 Oct;66(10):771-6. doi: 10.1002/cm.20336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验