Steinhauser Dagmar, Köster Sarah, Pfohl Thomas
Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstrasse 10, 37073 Göttingen, Germany.
"Institut für Röntgenphysik, CRC Nanospektroskopie und Röntgenbildgebung, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
ACS Macro Lett. 2012 May 15;1(5):541-545. doi: 10.1021/mz3000539. Epub 2012 Apr 10.
Many aspects of modern material science and biology rely on the strategic manipulation and understanding of polymer dynamics in confining micro- and nanoflow. We directly observe and analyze nonequilibrium structural and dynamic properties of individual semiflexible actin filaments in pressure-driven microfluidic channel flow using fluorescence microscopy. Different conformational shapes, such as filaments fluctuating in an elongated manner, parabolically bent, as well as tumbling, are identified. With increasing flow velocity, a strong center-of-mass migration toward the channel walls is observed. This significant migration effect can be explained by a shear rate dependent spatial diffusivity due to a gradient in chain mobility of the semiflexible polymers.
现代材料科学和生物学的许多方面都依赖于在受限的微纳流中对聚合物动力学进行策略性操控和理解。我们使用荧光显微镜直接观察和分析了压力驱动的微流体通道流中单个半柔性肌动蛋白丝的非平衡结构和动力学特性。识别出了不同的构象形状,例如以拉长方式波动的细丝、抛物线形弯曲的细丝以及翻滚的细丝。随着流速增加,观察到质心向通道壁的强烈迁移。这种显著的迁移效应可以用半柔性聚合物链迁移率梯度导致的与剪切速率相关的空间扩散率来解释。