Suppr超能文献

钙离子对神经元中 CaMKIIα 与 mGluR5 和 NMDA 受体相互作用的差异调节。

Differential regulation of CaMKIIα interactions with mGluR5 and NMDA receptors by Ca(2+) in neurons.

机构信息

Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.

出版信息

J Neurochem. 2013 Dec;127(5):620-31. doi: 10.1111/jnc.12434. Epub 2013 Sep 17.

Abstract

Two glutamate receptors, metabotropic glutamate receptor 5 (mGluR5), and ionotropic NMDA receptors (NMDAR), functionally interact with each other to regulate excitatory synaptic transmission in the mammalian brain. In exploring molecular mechanisms underlying their interactions, we found that Ca(2+) /calmodulin-dependent protein kinase IIα (CaMKIIα) may play a central role. The synapse-enriched CaMKIIα directly binds to the proximal region of intracellular C terminal tails of mGluR5 in vitro. This binding is state-dependent: inactive CaMKIIα binds to mGluR5 at a high level whereas the active form of the kinase (following Ca(2+) /calmodulin binding and activation) loses its affinity for the receptor. Ca(2+) also promotes calmodulin to bind to mGluR5 at a region overlapping with the CaMKIIα-binding site, resulting in a competitive inhibition of CaMKIIα binding to mGluR5. In rat striatal neurons, inactive CaMKIIα constitutively binds to mGluR5. Activation of mGluR5 Ca(2+) -dependently dissociates CaMKIIα from the receptor and simultaneously promotes CaMKIIα to bind to the adjacent NMDAR GluN2B subunit, which enables CaMKIIα to phosphorylate GluN2B at a CaMKIIα-sensitive site. Together, the long intracellular C-terminal tail of mGluR5 seems to serve as a scaffolding domain to recruit and store CaMKIIα within synapses. The mGluR5-dependent Ca(2+) transients differentially regulate CaMKIIα interactions with mGluR5 and GluN2B in striatal neurons, which may contribute to cross-talk between the two receptors. We show that activation of mGluR5 with a selective agonist triggers intracellular Ca(2+) release in striatal neurons. Released Ca(2+) dissociates preformed CaMKIIα from mGluR5 and meanwhile promotes active CaMKIIα to bind to the adjacent NMDAR GluN2B subunit, which enables CaMKIIα to phosphorylate GluN2B at a CaMKIIα-sensitive site. This agonist-induced cascade seems to mediate crosstalk between mGluR5 and NMDA receptors in neurons.

摘要

两种谷氨酸受体,代谢型谷氨酸受体 5(mGluR5)和离子型 NMDA 受体(NMDAR),在功能上相互作用,调节哺乳动物大脑中的兴奋性突触传递。在探索它们相互作用的分子机制时,我们发现钙/钙调蛋白依赖性蛋白激酶 IIα(CaMKIIα)可能发挥核心作用。突触丰富的 CaMKIIα 可在体外直接与 mGluR5 细胞内 C 端尾部的近段结合。这种结合是状态依赖的:无活性的 CaMKIIα 以高水平与 mGluR5 结合,而激酶的活性形式(在 Ca2+/钙调蛋白结合和激活后)则失去与受体的亲和力。Ca2+ 还促进钙调蛋白与 mGluR5 结合在与 CaMKIIα 结合位点重叠的区域,导致 CaMKIIα 与 mGluR5 结合的竞争性抑制。在大鼠纹状体神经元中,无活性的 CaMKIIα 持续与 mGluR5 结合。mGluR5 的 Ca2+依赖性激活使 CaMKIIα 从受体上解离,并同时促进 CaMKIIα 与相邻的 NMDAR GluN2B 亚基结合,使 CaMKIIα 能够在 CaMKIIα 敏感位点磷酸化 GluN2B。总的来说,mGluR5 的长细胞内 C 端尾巴似乎充当一个支架结构域,将 CaMKIIα 招募到突触中并储存起来。mGluR5 依赖性 Ca2+瞬变差异调节纹状体神经元中 CaMKIIα 与 mGluR5 和 GluN2B 的相互作用,这可能有助于两种受体之间的串扰。我们发现,选择性激动剂激活 mGluR5 会在纹状体神经元中引发细胞内 Ca2+释放。释放的 Ca2+使预形成的 CaMKIIα 与 mGluR5 解离,同时促进活性 CaMKIIα 与相邻的 NMDAR GluN2B 亚基结合,使 CaMKIIα 能够在 CaMKIIα 敏感位点磷酸化 GluN2B。这种激动剂诱导的级联反应似乎介导了神经元中 mGluR5 和 NMDA 受体之间的串扰。

相似文献

1
Differential regulation of CaMKIIα interactions with mGluR5 and NMDA receptors by Ca(2+) in neurons.
J Neurochem. 2013 Dec;127(5):620-31. doi: 10.1111/jnc.12434. Epub 2013 Sep 17.
2
Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII.
Brain Res. 2015 Oct 22;1624:414-423. doi: 10.1016/j.brainres.2015.07.053. Epub 2015 Aug 6.
3
Phosphorylation and regulation of glutamate receptors by CaMKII.
Sheng Li Xue Bao. 2014 Jun 25;66(3):365-72.
5
Multiple domains in the C-terminus of NMDA receptor GluN2B subunit contribute to neuronal death following in vitro ischemia.
Neurobiol Dis. 2016 May;89:223-34. doi: 10.1016/j.nbd.2015.11.007. Epub 2015 Nov 12.
8
Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
Mol Cell Neurosci. 2012 Nov;51(3-4):68-78. doi: 10.1016/j.mcn.2012.08.001. Epub 2012 Aug 10.
10
CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner.
Mol Cell Neurosci. 2017 Mar;79:45-52. doi: 10.1016/j.mcn.2016.12.002. Epub 2016 Dec 18.

引用本文的文献

1
Behavioral inflexibility through overtraining is mediated by reduced mGluR1/5 signaling capacity in the dorsolateral striatum.
PLoS Biol. 2025 Jul 29;23(7):e3003288. doi: 10.1371/journal.pbio.3003288. eCollection 2025 Jul.
4
The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats.
Psychopharmacology (Berl). 2024 Jul;241(7):1399-1415. doi: 10.1007/s00213-024-06571-3. Epub 2024 Mar 9.
5
Emotional- and cognitive-like responses induced by social defeat stress in male mice are modulated by the BNST, amygdala, and hippocampus.
Front Integr Neurosci. 2023 Jun 12;17:1168640. doi: 10.3389/fnint.2023.1168640. eCollection 2023.
6
Target cell-specific plasticity rules of NMDA receptor-mediated synaptic transmission in the hippocampus.
Front Cell Neurosci. 2023 Apr 5;17:1068472. doi: 10.3389/fncel.2023.1068472. eCollection 2023.
10
Group I Metabotropic Glutamate Receptors and Interacting Partners: An Update.
Int J Mol Sci. 2022 Jan 13;23(2):840. doi: 10.3390/ijms23020840.

本文引用的文献

2
Distribution of extrasynaptic NMDA receptors on neurons.
ScientificWorldJournal. 2012;2012:267120. doi: 10.1100/2012/267120. Epub 2012 Apr 30.
3
Diversity of metabotropic glutamate receptor-interacting proteins and pathophysiological functions.
Adv Exp Med Biol. 2012;970:63-79. doi: 10.1007/978-3-7091-0932-8_3.
5
Metabotropic glutamate receptors and interacting proteins: evolving drug targets.
Curr Drug Targets. 2012 Jan;13(1):145-56. doi: 10.2174/138945012798868452.
6
Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor.
Mol Cell Neurosci. 2011 Dec;48(4):298-307. doi: 10.1016/j.mcn.2011.05.009. Epub 2011 May 26.
9
Post-translational modification biology of glutamate receptors and drug addiction.
Front Neuroanat. 2011 Mar 17;5:19. doi: 10.3389/fnana.2011.00019. eCollection 2011.
10
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验