Paget-Blanc Vincent, Cavaccini Anna, Longaretti Alessandra, Nava Luca, Trusel Massimo, Rocchi Anna, Pennuto Maria, Marcello Elena, Gardoni Fabrizio, Greco Barbara, Tonini Raffaella
Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.
Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy.
PLoS Biol. 2025 Jul 29;23(7):e3003288. doi: 10.1371/journal.pbio.3003288. eCollection 2025 Jul.
The control of instrumental actions engages distinct behavioral strategies whose contributions are regulated with experience. Instrumental performance, which depends on the causal relationship between actions and their outcomes (A-O), relies on flexible, goal-directed control of behavior. Actions can become less sensitive to changes in action-outcome (A-O) contingencies with repetition, resulting in more inflexible, habitual behaviors. The loss of flexibility with repetition requires plasticity at corticostriatal circuits. However, the underlying molecular mechanisms are not yet established, and how these mechanisms specifically relate to the inability to adapt to new contingencies is unknown. In mice, we find that inflexible behavioral performance following overtraining of an appetitive instrumental task is associated with a reduced capacity of mGluR5 receptors in the dorsolateral striatum (DLS) to engage intracellular signaling in response to changes in action-outcome contingency. We also observed dichotomous modulation of timing-dependent synaptic depression (tLTD) at striatal projection neurons of the indirect (iSPNs) and direct (dSPNs) pathways. Preventing overstimulation of mGluR5 signaling through a homotypic process preserved behavioral sensitivity to changes in A-O contingencies despite overtraining, and averted the related biochemical and synaptic changes. Furthermore, mGluR5 couples to different signaling pathways to regulate tLTD in iSPNs and dSPNs. Our findings demonstrate that decreased signaling capacity of mGluR1/5, accompanied by cell-type-specific modulation of corticostriatal synapses in the DLS, represents a key molecular mechanism underlying overtraining-induced behavioral inflexibility.
工具性动作的控制涉及不同的行为策略,其作用会随着经验而得到调节。工具性表现依赖于动作与其结果(A-O)之间的因果关系,它依靠对行为进行灵活的、目标导向的控制。随着重复进行,动作对动作-结果(A-O)意外情况变化的敏感度会降低,从而导致行为变得更加不灵活、更具习惯性。重复导致的灵活性丧失需要皮质纹状体回路具备可塑性。然而,其潜在的分子机制尚未明确,而且这些机制如何具体与无法适应新的意外情况相关也尚不清楚。在小鼠中,我们发现,对一项奖赏性工具性任务进行过度训练后出现的不灵活行为表现,与背外侧纹状体(DLS)中代谢型谷氨酸受体5(mGluR5)受体响应动作-结果意外情况变化而参与细胞内信号传导的能力降低有关。我们还观察到间接(iSPNs)和直接(dSPNs)通路的纹状体投射神经元处存在时间依赖性突触抑制(tLTD)的二分调制。通过同型过程防止mGluR5信号过度刺激,尽管进行了过度训练,但仍能保持行为对A-O意外情况变化的敏感性,并避免相关的生化和突触变化。此外,mGluR5与不同的信号通路耦合,以调节iSPNs和dSPNs中的tLTD。我们的研究结果表明,mGluR1/5信号传导能力下降,伴随着DLS中皮质纹状体突触的细胞类型特异性调制,是过度训练诱导的行为不灵活性的关键分子机制。