Figueiredo J L, Mendonça J T, Terças H
GoLP - Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
Phys Rev E. 2023 Jul;108(1):L013201. doi: 10.1103/PhysRevE.108.L013201.
Bose-Einstein condensation of a finite number of photons propagating inside a plasma-filled microcavity is investigated. The nonzero chemical potential is provided by the electrons, which induces a finite photon mass and allows condensation to occur. We derive an equation that models the evolution of the photon-mode occupancies, with Compton scattering taken into account as the mechanism of thermalization. The kinetic evolution of the photon spectrum is solved numerically, and we find evidence of condensation down to nanosecond timescales for typical microplasma conditions, n_{e}∼10^{14}-10^{15}cm^{-3}. The critical temperature scales almost linearly with the number of photons, and we find high condensate fractions at microcavity-plasma temperatures, for experimentally achievable cavity lengths (100-500µm) and photon numbers (10^{10}-10^{12}).
研究了在充满等离子体的微腔内传播的有限数量光子的玻色-爱因斯坦凝聚。非零化学势由电子提供,这会诱导出有限的光子质量并允许凝聚发生。我们推导了一个模拟光子模式占有率演化的方程,其中将康普顿散射作为热化机制考虑在内。通过数值求解光子谱的动力学演化,我们发现在典型的微等离子体条件下,即电子密度(n_{e}∼10^{14}-10^{15}cm^{-3})时,在纳秒时间尺度内存在凝聚的证据。临界温度几乎与光子数呈线性关系,并且我们发现在实验可实现的腔长度(100 - 500µm)和光子数((10^{10}-10^{12}))下,在微腔 - 等离子体温度时有很高的凝聚分数。