Suppr超能文献

一项关于院内缓慢性心搏停止性心脏骤停前未监测心电图指标的病例对照研究:对预测性监测警报的启示

A case-control study of non-monitored ECG metrics preceding in-hospital bradyasystolic cardiac arrest: implication for predictive monitor alarms.

作者信息

Hu Xiao, Do Duc, Bai Yong, Boyle Noel G

机构信息

Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Biomedical Engineering Graduate Program, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

出版信息

J Electrocardiol. 2013 Nov-Dec;46(6):608-15. doi: 10.1016/j.jelectrocard.2013.08.010. Epub 2013 Sep 10.

Abstract

OBJECTIVES

We investigated whether additional electrocardiographic (ECG) metrics not available on current patient monitors could predict bradyasystolic cardiac arrest in hospitalized adult patients.

METHODS

A retrospective case-control design was used to study eight ECG metrics from 22 adult bradyasystolic patients and their 45 control patients. The eight ECG metrics included heart rate, QRS width, interval from P-wave peak to QRS onset (PRp), heart rate-corrected interval from QRS onset to T-wave peak (QTpc), amplitude of QRS peak (rAmp), amplitude of P-wave (pAmp), amplitude of T-wave (tAmp), and absolute difference in the ECG amplitudes at QRS onset and offset divided by rAmp, that is, relative J-point amplitude (relJAmp). We derived the maximal true-positive rate (TPR) of detecting cardiac arrest at a globally minimal false-positive rate (FPR) for each metric and for the absolute slope values resulted from a linear fitting of the time series of these metrics. We also recorded the first time crossing the detection threshold to the time of arrest as lead time.

RESULTS

Conditions of relJAmp >20% and PRp >196.6 ms, respectively, achieved a TPR of 22.7% and 27.3% with zero FPRs. The lead prediction time of these two conditions was 5.7 ± 6.8 hours and 8.0 ± 7.2 hours, respectively. Performance of triggers based on the absolute slope values depended on the window length used for linear fitting. rAmp slope of a 2-hour window, PRp slope of a 30-minute window, and relJAmp slope of a 2-hour window achieved the best TPR of 27.3% (FPR = 2.3%, lead time = 6.5 ± 5.7 hours), 14.3% (FPR=0.0%, lead time = 10.9 ± 10.9), and 18.2% (FPR = 2.3%, lead time = 8.8 ± 9.8), respectively. McNemar test showed that only relJAmp >20.0% is significantly different from the baseline trigger of HR >149.3 bpm (p=0.046). In addition, metrics-based and slope-based triggers were complementary as an "OR" combination of two single-metric triggers raised the TPR up to 45.4% with zero FPR.

CONCLUSIONS

It is feasible to compute additional metrics from continuous ECG from bedside monitors. These additional parameters can provide highly specific triggers for predicting bradyasystolic cardiac arrest. Complementary triggers based on the slope of trending of these ECG metrics can further increase the sensitivity without incurring false positives.

摘要

目的

我们研究了当前患者监护仪上无法获取的额外心电图(ECG)指标是否能够预测住院成年患者的缓慢性心搏停止性心脏骤停。

方法

采用回顾性病例对照设计,研究了22例成年缓慢性心搏停止患者及其45例对照患者的8项ECG指标。这8项ECG指标包括心率、QRS波宽度、从P波峰值到QRS波起始的间期(PRp)、经心率校正的从QRS波起始到T波峰值的间期(QTpc)、QRS波峰值幅度(rAmp)、P波幅度(pAmp)、T波幅度(tAmp),以及QRS波起始和结束时ECG幅度的绝对差值除以rAmp,即相对J点幅度(relJAmp)。我们得出了每项指标以及这些指标时间序列线性拟合得到的绝对斜率值在全局最小假阳性率(FPR)下检测心脏骤停的最大真阳性率(TPR)。我们还记录了首次越过检测阈值到心脏骤停发生的时间作为提前时间。

结果

relJAmp>20%和PRp>196.6 ms的条件分别实现了22.7%和27.3%的TPR,且FPR为零。这两个条件的提前预测时间分别为5.7±6.8小时和8.0±7.2小时。基于绝对斜率值的触发指标的性能取决于用于线性拟合的窗口长度。2小时窗口的rAmp斜率、30分钟窗口的PRp斜率和2小时窗口的relJAmp斜率分别实现了最佳TPR,分别为27.3%(FPR = 2.3%,提前时间 = 6.5±5.7小时)、14.3%(FPR = 0.0%,提前时间 = 10.9±10.9)和18.2%(FPR = 2.3%,提前时间 = 8.8±9.8)。McNemar检验表明,只有relJAmp>20.0%与心率>149.3 bpm的基线触发指标有显著差异(p = 0.046)。此外,基于指标的触发指标和基于斜率的触发指标是互补的,因为两个单指标触发指标的“或”组合可将TPR提高至45.4%,且FPR为零。

结论

从床边监护仪的连续ECG中计算额外指标是可行的。这些额外参数可为预测缓慢性心搏停止性心脏骤停提供高度特异的触发指标。基于这些ECG指标趋势斜率的互补触发指标可进一步提高敏感性而不产生假阳性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验