Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
BMC Genomics. 2013 Sep 14;14:619. doi: 10.1186/1471-2164-14-619.
External development and optical transparency of embryos make zebrafish exceptionally suitable for in vivo insertional mutagenesis using fluorescent proteins to visualize expression patterns of mutated genes. Recently developed Gene Breaking Transposon (GBT) vectors greatly improve the fidelity and mutagenicity of transposon-based gene trap vectors.
We constructed and tested a bipartite GBT vector with Gal4-VP16 as the primary gene trap reporter. Our vector also contains a UAS:eGFP cassette for direct detection of gene trap events by fluorescence. To confirm gene trap events, we generated a UAS:mRFP tester line. We screened 270 potential founders and established 41 gene trap lines. Three of our gene trap alleles display homozygous lethal phenotypes ranging from embryonic to late larval: nsf( tpl6), atp1a3a(tpl10) and flr(tpl19). Our gene trap cassette is flanked by direct loxP sites, which enabled us to successfully revert nsf( tpl6), atp1a3a(tpl10) and flr(tpl19) gene trap alleles by injection of Cre mRNA. The UAS:eGFP cassette is flanked by direct FRT sites. It can be readily removed by injection of Flp mRNA for use of our gene trap alleles with other tissue-specific GFP-marked lines. The Gal4-VP16 component of our vector provides two important advantages over other GBT vectors. The first is increased sensitivity, which enabled us to detect previously unnoticed expression of nsf in the pancreas. The second advantage is that all our gene trap lines, including integrations into non-essential genes, can be used as highly specific Gal4 drivers for expression of other transgenes under the control of Gal4 UAS.
The Gal4-containing bipartite Gene Breaking Transposon vector presented here retains high specificity for integrations into genes, high mutagenicity and revertibility by Cre. These features, together with utility as highly specific Gal4 drivers, make gene trap mutants presented here especially useful to the research community.
胚胎的外部发育和光学透明度使斑马鱼非常适合使用荧光蛋白进行体内插入诱变,以可视化突变基因的表达模式。最近开发的基因打靶转座子 (GBT) 载体极大地提高了基于转座子的基因捕获载体的保真度和突变率。
我们构建并测试了一个带有 Gal4-VP16 的二部分 GBT 载体作为主要的基因捕获报告基因。我们的载体还包含一个 UAS:eGFP 盒,用于通过荧光直接检测基因捕获事件。为了确认基因捕获事件,我们生成了一个 UAS:mRFP 测试线。我们筛选了 270 个潜在的启动子,建立了 41 个基因捕获系。我们的三个基因捕获等位基因显示出从胚胎到晚期幼虫的纯合致死表型:nsf( tpl6)、atp1a3a(tpl10) 和 flr(tpl19)。我们的基因捕获盒被直接loxP 位点包围,这使我们能够通过注射 Cre mRNA 成功回复 nsf( tpl6)、atp1a3a(tpl10) 和 flr(tpl19)基因捕获等位基因。UAS:eGFP 盒被直接 FRT 位点包围。它可以通过注射 Flp mRNA 轻松去除,以便在其他组织特异性 GFP 标记的系中使用我们的基因捕获等位基因。我们载体中的 Gal4-VP16 组件与其他 GBT 载体相比具有两个重要优势。第一个是提高了灵敏度,使我们能够检测到 nsf 在胰腺中的以前未被注意到的表达。第二个优势是,我们所有的基因捕获系,包括整合到非必需基因中的系,都可以用作高度特异性 Gal4 驱动子,用于在 Gal4 UAS 控制下表达其他转基因。
这里提出的含有 Gal4 的二部分基因打靶转座子载体保持了对基因整合的高度特异性、Cre 介导的高突变率和可回复性。这些特性,加上作为高度特异性 Gal4 驱动子的用途,使这里提出的基因捕获突变体特别适合研究界。