Suppr超能文献

玻璃纤维表面硅烷-PVA/PVAc 复合膜的形成机理。

Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

机构信息

Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH1, Bratislava 842 15 (Slovakia).

出版信息

Chemphyschem. 2013 Oct 21;14(15):3569-80. doi: 10.1002/cphc.201300608. Epub 2013 Aug 29.

Abstract

Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging from -64 to -12 mV at pH's of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from -25 to -5 mV. The shapes of the pH-dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple-layer model is used to fit the non-silanized glass surface and the silane film. The value of the surface-site density for Γ(Xglass) and Γ(Xsilane), in which X denotes the Al-O-Si group, differs by a factor of 10(-4), which suggests an effective coupling of the silane film. A soft-layer model is used to fit the silane-PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10% of the total length (27 nm), 2) the layer of the first PVA shell contributes 30% to the total length (81 nm), 3) the layer of the PVAc core contributes 30% to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30% of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low-order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane-PVA/PVAc complex film.

摘要

玻璃纤维增强复合材料的力学性能受纤维上的浆纱影响。在纳米尺度上,通过原子力显微镜(AFM)和在宏观尺度上通过zeta 电位确定了在玻璃纤维表面上基于硅烷膜和 PVA/PVAc(聚乙烯醇/聚醋酸乙烯酯)微球的复杂薄膜形成。硅烷基团通过 Si-O-Si 键强烈结合到玻璃表面上,这提供了作为偶联剂的附着机制。硅烷基团形成岛、均匀的薄膜以及空的位置。硅烷化表面的平均粗糙度为 6.5nm,而未硅烷化表面的平均粗糙度仅为 0.6nm。硅烷膜以蜂窝状的方式从玻璃表面垂直穿透,穿过沉积的 PVA/PVAc 微球,形成六方密堆积结构。硅烷膜不仅穿透,而且还使 PVA/PVAc 微球从分散体中的球形变形为表面上的椭圆形,其平均尺寸为 300/600nm。表面面积值 Sa 表示未受硅烷渗透影响的 PVA/PVAc 微球的面积。如果椭圆的尺寸为 320/570、300/610 和 270/620nm,则相应的硅烷浓度分别为 0、3.8 和 7.2μgmL(-1),那么面积分别为 0.2、0.08 和 0.03μm(2)。硅烷膜在复杂薄膜形成过程中还会移动 PVA/PVAc 微球,从低硅烷浓度区域移动到复杂薄膜区域,提供足够的硅烷基团来稳定结构。硅烷浓度分别为 3.8、7.2 和 14.3μgmL(-1)时,残余硅烷蜂窝结构高度(Ha)的值分别为 6.5、7 和 12nm。依赖 pH 的 zeta 电位结果表明硅烷基团具有特定的作用,对玻璃纤维表面以及 PVA/PVAc 微球都有影响。非硅烷化玻璃纤维表面和硅烷膜在 pH 值为 10.5 和 3 时的 zeta 电位相似,范围分别为-64 至-12mV。玻璃纤维表面上的 PVA/PVAc 微球和硅烷膜内的 zeta 电位显著降低,范围为-25 至-5mV。在 pH 值为 7 至 4 的情况下,硅烷基团的 pH 依赖 zeta 电位的形状不同。使用三层模型拟合非硅烷化玻璃表面和硅烷膜。表面位密度值 Γ(Xglass)和 Γ(Xsilane)(其中 X 表示 Al-O-Si 基团)的差异为 10(-4),这表明硅烷膜的有效偶联。使用软层模型拟合硅烷-PVA/PVAc 复合膜,该模型近似为四层。这种简化和微球形状的补偿给出了各层相关宽度的近似值,如下所示:1)硅烷基团层占总长度的 10%(27nm),2)第一层 PVA 壳贡献总长度的 30%(81nm),3)PVAc 核贡献总长度的 30%(81nm),最后 4)第二层 PVA 壳提供总长度的 30%(81nm)。覆盖度模拟得到的值为 0.4,这与低阶覆盖度的假设相对应,并且得到了 AFM 扫描的支持。AFM 扫描和 zeta 电位的结果表明了硅烷-PVA/PVAc 复合膜的形成机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验