Suppr超能文献

A simulation of neuromuscular function and heart rate during induction, maintenance, and reversal of neuromuscular blockade.

作者信息

Jaklitsch R R, Westenskow D R

机构信息

Department of Anesthesiology, University of Utah, Salt Lake City 84132.

出版信息

J Clin Monit. 1990 Jan;6(1):24-38. doi: 10.1007/BF02832179.

Abstract

We developed a two-compartment model to simulate neuromuscular function and heart rate following the administration of four nondepolarizing neuromuscular blocking agents (atracurium, vecuronium, pancuronium, and d-tubocurarine), three neuromuscular block reversal agents (edrophonium, neostigmine, and pyridostigmine), and two anticholinergic agents (atropine and glycopyrrolate). Twitch depression, train-of-four ratio, and heart rate were modeled during fentanyl, halothane, enflurane, or isoflurane anesthesia, optionally supplemented with nitrous oxide. Simulation results, compared with published values for each drug, fell within the clinical accuracy range (onset time 6.1 +/- 3.9% [mean +/- SEM]; duration, 1.7 +/- 3.5%, 50% effective dose, 0.5 +/- 5.7%; and 95% effective dose, 2.1 +/- 1.1%). The simulation graphically demonstrates the pharmacokinetics, pharmacodynamics, and interactions between neuromuscular blocking agents, reversal agents, and anticholinergic agents. During a simulation, the need for frequent monitoring and repeated delivery of a neuromuscular blocking agent to keep neuromuscular blockade stable becomes apparent, especially with the intermediate-acting neuromuscular blocking agents. When inhalational agents are given concomitantly, the task becomes even more difficult, since potentiation changes with anesthetic uptake. Recurarization, tachycardia, or bradycardia may be seen with the simulation if an improper drug regimen is followed. Concurrent simulation of two identical patients allows comparison of different modes of administration, choice of anesthetic agents, and drug doses.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验