Analysis of degradation processes of bovine fibrinogen by bovine plasmin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a study on the mode of changes of the properties related to clotting of digestion products as a function of time were performed. Gross features and patterns very similar to those which had been reported with human fibrinogen-plasmin systems were obtained. 2. Based on the molecular size of the degradation products and the mode of appearance and disappearance of the degradation products, the processes could tentatively be divided into three stages: stage 1, where fibrinogen (mol. wt 370 000) was degraded to produce fragments X1 (330 000) and X2 (290 000); stage 2, fragment X2 was degraded with appearance of Y (210 000) and D1 (140 000); stage 3, appearance of fragments D1, D2 (110 000), and D3 (100 000) sequentially and E (68 000) with concomitant disappearance of Y. 3. A microseparation method, which is a combination of dansylation and sodium dodecylsulfate-polyacrylamide gel electrophoresis, was devised to analyze the events of stage 1 in detail, and a molecular model for the process was proposed. 4. The plasmic degradation processes of bovine non-cross-linked fibrins in solution and in gel form were compared with that of fibrinogen and it was found that the state of the substrates, fibrins, could cause differences in the degradation patterns. With the former substrate, essentially the same sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns as those with fibrinogen were obtained. With the latter substrate, however, a distinct difference in the mode of degradation of beta chains was observed.