Suppr超能文献

波形特征阶段分析:在垂直跳跃中的应用。

Analysis of characterizing phases on waveform: an application to vertical jumps.

作者信息

Richter Chris, O'Connor Noel E, Marshall Brendan, Moran Kieran

机构信息

Applied Sports Performance Research, School of Health and Human Performance, Dublin City University, Dublin; with CLARITY: Centre for Sensor Web Technologies; and with Sports Surgery Clinic, Santry Demesne, Dublin, Ireland.

出版信息

J Appl Biomech. 2014 Apr;30(2):316-21. doi: 10.1123/jab.2012-0218. Epub 2013 Sep 13.

Abstract

The aim of this study is to propose a novel data analysis approach, an analysis of characterizing phases (ACP), that detects and examines phases of variance within a sample of curves utilizing the time, magnitude, and magnitude-time domains; and to compare the findings of ACP to discrete point analysis in identifying performance-related factors in vertical jumps. Twenty-five vertical jumps were analyzed. Discrete point analysis identified the initial-to-maximum rate of force development (P=.006) and the time from initial-to-maximum force (P=.047) as performance-related factors. However, due to intersubject variability in the shape of the force curves (ie, non-, uni- and bimodal nature), these variables were judged to be functionally erroneous. In contrast, ACP identified the ability to apply forces for longer (P<.038), generate higher forces (P<.027), and produce a greater rate of force development (P<.003) as performance-related factors. Analysis of characterizing phases showed advantages over discrete point analysis in identifying performance-related factors because it (i) analyses only related phases, (ii) analyses the whole data set, (iii) can identify performance-related factors that occur solely as a phase, (iv) identifies the specific phase over which differences occur, and (v) analyses the time, magnitude and combined magnitude-time domains.

摘要

本研究的目的是提出一种新颖的数据分析方法,即特征阶段分析(ACP),该方法利用时间、幅度和幅度-时间域来检测和检查曲线样本中的方差阶段;并将ACP的结果与离散点分析在识别垂直跳跃中与表现相关因素方面进行比较。对25次垂直跳跃进行了分析。离散点分析将初始到最大力发展速率(P = 0.006)和从初始到最大力的时间(P = 0.047)确定为与表现相关的因素。然而,由于力曲线形状的个体间变异性(即非模式、单峰和双峰性质),这些变量被判定为功能错误。相比之下,ACP将更长时间施加力的能力(P < 0.038)、产生更高力的能力(P < 0.027)以及产生更大力发展速率的能力(P < 0.003)确定为与表现相关的因素。特征阶段分析在识别与表现相关因素方面显示出优于离散点分析的优势,因为它(i)仅分析相关阶段,(ii)分析整个数据集,(iii)可以识别仅作为一个阶段出现的与表现相关的因素,(iv)识别差异出现的特定阶段,以及(v)分析时间、幅度和组合的幅度-时间域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验