Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
Phys Chem Chem Phys. 2013 Oct 28;15(40):17636-46. doi: 10.1039/c3cp52956h.
Nitrate and halide ions coexist in particles generated in marine regions, around alkaline dry lakes, and in the Arctic snowpack. Although the photochemistry of nitrate ions in bulk aqueous solution is well known, there is recent evidence that it may be more efficient at liquid-gas interfaces, and that the presence of other ions in solution may enhance interfacial reactivity. This study examines the 311 nm photolysis of thin aqueous films of ternary halide-nitrate salt mixtures (NaCl-NaBr-NaNO3) deposited on the walls of a Teflon chamber at 298 K. The films were generated by nebulizing aqueous 0.25 M NaNO3 solutions which had NaCl and NaBr added to vary the mole fraction of halide ions. Molar ratios of chloride to bromide ions were chosen to be 0.25, 1.0, or 4.0. The subsequent generation of gas phase NO2 and reactive halogen gases (Br2, BrCl and Cl2) were monitored with time. The rate of gas phase NO2 formation was shown to be enhanced by the addition of the halide ions to thin films containing only aqueous NaNO3. At [Cl(-)]/[Br(-)] ≤ 1.0, the NO2 enhancement was similar to that observed for binary NaBr-NaNO3 mixtures, while with excess chloride NO2 enhancement was similar to that observed for binary NaCl-NaNO3 mixtures. Molecular dynamics simulations predict that the halide ions draw nitrate ions closer to the interface where a less complete solvent shell allows more efficient escape of NO2 to the gas phase, and that bromide ions are more effective in bringing nitrate ions closer to the surface. The combination of theory and experiments suggests that under atmospheric conditions where nitrate ion photochemistry plays a role, the impact of other species such as halide ions should be taken into account in predicting the impacts of nitrate ion photochemistry.
硝酸盐和卤化物离子共同存在于海洋区域、碱性干燥湖泊周围以及北极雪中产生的颗粒中。虽然在 bulk aqueous solution 中硝酸盐离子的光化学反应已广为人知,但最近有证据表明,它在气液界面处可能更为有效,并且溶液中其他离子的存在可能会增强界面反应性。本研究考察了在 298 K 下沉积在特氟龙腔室壁上的三元卤化物-硝酸盐盐混合物(NaCl-NaBr-NaNO3)薄水膜在 311nm 光解下的情况。通过雾化含有 NaCl 和 NaBr 的 0.25M NaNO3 水溶液来生成薄膜,从而改变卤化物离子的摩尔分数。氯和溴离子的摩尔比选为 0.25、1.0 或 4.0。随后用时间监测气相中 NO2 和活性卤素气体(Br2、BrCl 和 Cl2)的生成情况。结果表明,在仅含有 NaNO3 的薄水膜中添加卤化物离子会加速气相中 NO2 的形成。在 [Cl(-)]/[Br(-)]≤1.0 时,NO2 的增强与二元 NaBr-NaNO3 混合物中观察到的情况相似,而在过量的氯离子存在下,NO2 的增强与二元 NaCl-NaNO3 混合物中观察到的情况相似。分子动力学模拟预测,卤化物离子将硝酸盐离子拉近界面,在那里,不完全的溶剂壳允许更多的 NO2 有效地逃逸到气相中,而溴化物离子则更有效地将硝酸盐离子拉近表面。理论和实验的结合表明,在硝酸盐离子光化学起作用的大气条件下,在预测硝酸盐离子光化学的影响时,应考虑其他物质(如卤化物离子)的影响。