Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3868-77. doi: 10.1073/pnas.1215295110. Epub 2013 Sep 16.
The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons.
幼虫躲避光线是感觉运动行为的经典范例。在这里,我们使用行为分析和视频显微镜来量化使用果蝇幼虫的趋光性的感觉运动结构。幼虫的运动由一系列奔跑(向前运动的时期)组成,奔跑期间会被突然的转弯打断,此时幼虫会暂停并前后摆动头部,探测局部光信息以确定下一次奔跑的方向。所有趋光反应都是由相同的感觉运动转换介导的,这些转换需要对感觉输入进行时间处理。通过对感觉外围的特定神经元进行功能成像和遗传失活,我们已经开始将这些感觉运动回路映射到幼虫的中央脑中。我们发现,控制不同光诱发反应的特定感觉运动途径在感光神经元后的第一个中继站开始分离。