Suppr超能文献

果蝇幼虫视觉系统:简单视觉神经丛的高分辨率分析。

The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil.

机构信息

Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musee 10, 1700, Fribourg, Switzerland.

出版信息

Dev Biol. 2011 Oct 1;358(1):33-43. doi: 10.1016/j.ydbio.2011.07.006. Epub 2011 Jul 12.

Abstract

The task of the visual system is to translate light into neuronal encoded information. This translation of photons into neuronal signals is achieved by photoreceptor neurons (PRs), specialized sensory neurons, located in the eye. Upon perception of light the PRs will send a signal to target neurons, which represent a first station of visual processing. Increasing complexity of visual processing stems from the number of distinct PR subtypes and their various types of target neurons that are contacted. The visual system of the fruit fly larva represents a simple visual system (larval optic neuropil, LON) that consists of 12 PRs falling into two classes: blue-senstive PRs expressing Rhodopsin 5 (Rh5) and green-sensitive PRs expressing Rhodopsin 6 (Rh6). These afferents contact a small number of target neurons, including optic lobe pioneers (OLPs) and lateral clock neurons (LNs). We combine the use of genetic markers to label both PR subtypes and the distinct, identifiable sets of target neurons with a serial EM reconstruction to generate a high-resolution map of the larval optic neuropil. We find that the larval optic neuropil shows a clear bipartite organization consisting of one domain innervated by PRs and one devoid of PR axons. The topology of PR projections, in particular the relationship between Rh5 and Rh6 afferents, is maintained from the nerve entering the brain to the axon terminals. The target neurons can be subdivided according to neurotransmitter or neuropeptide they use as well as the location within the brain. We further track the larval optic neuropil through development from first larval instar to its location in the adult brain as the accessory medulla.

摘要

视觉系统的任务是将光转化为神经元编码信息。这种光子到神经元信号的转换是通过位于眼睛中的光感受器神经元(PRs)来实现的,PRs 是专门的感觉神经元。在感知光时,PRs 将向靶神经元发送信号,靶神经元代表视觉处理的第一站。视觉处理的复杂性源于不同 PR 亚型的数量及其与各种类型的靶神经元的接触。果蝇幼虫的视觉系统代表了一个简单的视觉系统(幼虫光神经丛,LON),它由 12 个 PR 组成,分为两类:表达视蛋白 5(Rh5)的蓝敏 PR 和表达视蛋白 6(Rh6)的绿敏 PR。这些传入神经与少量的靶神经元接触,包括视神经先驱(OLPs)和侧时钟神经元(LNs)。我们将遗传标记物的使用结合起来,以标记两种 PR 亚型和不同的、可识别的靶神经元集,并用连续 EM 重建生成幼虫光神经丛的高分辨率图谱。我们发现幼虫光神经丛表现出明显的二分组织,由一个由 PR 支配的区域和一个没有 PR 轴突的区域组成。PR 投射的拓扑结构,特别是 Rh5 和 Rh6 传入的关系,从神经进入大脑到轴突末端都保持不变。靶神经元可以根据它们使用的神经递质或神经肽以及在大脑中的位置进行细分。我们进一步通过从第一幼虫龄期到成虫大脑中的附属 Medulla 的位置来跟踪幼虫光神经丛的发育。

相似文献

引用本文的文献

4
Tep1 Regulates Yki Activity in Neural Stem Cells in Glioma Model.Tep1在胶质瘤模型中调节神经干细胞中的Yki活性。
Front Cell Dev Biol. 2020 May 8;8:306. doi: 10.3389/fcell.2020.00306. eCollection 2020.
6
A Plastic Visual Pathway Regulates Cooperative Behavior in Drosophila Larvae.塑料视觉通路调节果蝇幼虫的合作行为。
Curr Biol. 2019 Jun 3;29(11):1866-1876.e5. doi: 10.1016/j.cub.2019.04.060. Epub 2019 May 23.
7
Neural Substrates of Drosophila Larval Anemotaxis.果蝇幼虫趋风性的神经基础。
Curr Biol. 2019 Feb 18;29(4):554-566.e4. doi: 10.1016/j.cub.2019.01.009. Epub 2019 Feb 7.
8
Organization of the larval visual circuit.幼虫视觉回路的组织
Elife. 2017 Aug 8;6:e28387. doi: 10.7554/eLife.28387.

本文引用的文献

1
Photoreceptors: unconventional ways of seeing.感光细胞:非传统的视觉方式。
Curr Biol. 2011 Jan 11;21(1):R25-7. doi: 10.1016/j.cub.2010.11.063.
5
9
Drosophila's view on insect vision.果蝇对昆虫视觉的看法。
Curr Biol. 2009 Jan 13;19(1):R36-47. doi: 10.1016/j.cub.2008.11.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验