College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.
Phys Chem Chem Phys. 2013 Nov 7;15(41):17823-36. doi: 10.1039/c3cp52687a.
Modified ANO-RCC basis sets are used to determine twelve molecular graphs of the Ehrenfest force for H2, CH4, CH2O, CH3NO, C2H2, C2H4, C3H3NO, N4H4, H2O, (H2O)2, (H2O)4 and (H2O)6. The molecular graphs include all types of topological critical points and a mix of bonding types is chosen to include sigma-, π- and hydrogen-bonding. We then compare a wide range of point properties: charge density, trace of the Hessian, eigenvalues, ellipticity, stiffness, total local energy and the eigenvectors are calculated at the bond critical points (BCPs) and compared for the Ehrenfest, QTAIM and stress tensor schemes. QTAIM is found to be the only partitioning scheme that can differentiate between shared- and closed-shell chemical bond types. Only the results from the Ehrenfest force partitioning, however, are demonstrated to be physically intuitive. This is demonstrated for the water molecule, the water-dimer and the water clusters (H2O)4 and (H2O)6. In particular, both the stiffness and the trace of the Hessians of the appropriate quantities of the sigma-bond BCPs for the water clusters are found to depend on the quantum topology dimension of the molecular graph. The behavior of all the stress tensor point properties is found to be erratic. This is explained by the ambiguity in the theoretical definition of the stress tensor. As a complementary approach the Ehrenfest force provides a new indicator of the mixed chemical character of the hydrogen-bond BCP, which arises from the collinear donor sigma-bond donating a degree of covalent character to the hydrogen-bond. This indicator takes the form of the relative orientation of the shallowest direction of the Ehrenfest potential of the hydrogen-bond BCPs and the corresponding direction for the collinear sigma-bond BCP.
修正的ANO-RCC 基组用于确定 H2、CH4、CH2O、CH3NO、C2H2、C2H4、C3H3NO、N4H4、H2O、(H2O)2、(H2O)4 和 (H2O)6 的十二种 Ehrenfest 力分子图。分子图包括所有类型的拓扑临界点,并选择混合键合类型以包括 σ-、π-和氢键。然后,我们比较了广泛的点性质:电荷密度、Hessian 的迹、特征值、椭圆率、硬度、总局部能量和特征向量,在键临界点 (BCP) 处计算,并比较 Ehrenfest、QTAIM 和应力张量方案。发现 QTAIM 是唯一能够区分共享和闭壳化学键类型的分区方案。然而,只有 Ehrenfest 力分区的结果被证明具有物理直观性。这在水分子、水二聚体和水分子簇 (H2O)4 和 (H2O)6 中得到了证明。特别是,水分子簇的 σ 键 BCP 的适当数量的硬度和 Hessian 迹都被发现取决于分子图的量子拓扑维数。所有应力张量点性质的行为都被发现是不稳定的。这可以通过应力张量的理论定义的不明确性来解释。作为一种补充方法,Ehrenfest 力提供了氢键 BCP 混合化学性质的新指标,这是由共线供体 σ 键向氢键赋予一定程度的共价性质引起的。该指标采用氢键 BCP 的 Ehrenfest 势能的最浅方向和相应的共线 σ 键 BCP 的方向的相对取向的形式。