Suppr超能文献

生态流行病学模型中的复杂动态。

Complex dynamics in an eco-epidemiological model.

机构信息

Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK,

出版信息

Bull Math Biol. 2013 Nov;75(11):2059-78. doi: 10.1007/s11538-013-9880-z. Epub 2013 Sep 18.

Abstract

The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig-MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle-node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible.

摘要

传染病的存在会显著改变生态系统的动态。通过研究 Rosenzweig-MacArthur 模型中捕食者种群中的一种 SI 型疾病,我们发现了大量在没有疾病的情况下不存在的复杂动态。数值解表明存在鞍结和亚临界 Hopf 分岔、转折点和分支周期解,以及倍周期分岔进入混沌。这意味着存在双稳区,其中疾病可能具有稳定和不稳定的双重影响。我们还发现了三稳性,涉及地方病环(或极限环)、地方病平衡点和无病极限环。地方病环似乎通过同宿轨道消失。值得注意的是,当基本再生数小于 1 时,其中一些动态就会发生,而根本不应该出现地方病情况。多稳性使生态流行病系统对扰动非常敏感,并促进了许多状态的转变,其中一些我们发现是不可逆转的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验