Suppr超能文献

母体内营养物质减少时胎盘转录组在狒狒中的表达取决于胎儿性别。

Expression of the placental transcriptome in maternal nutrient reduction in baboons is dependent on fetal sex.

机构信息

Department of Genetics.

出版信息

J Nutr. 2013 Nov;143(11):1698-708. doi: 10.3945/jn.112.172148. Epub 2013 Sep 18.

Abstract

Maternal undernutrition increases the risk of perinatal complications and predisposes offspring to obesity, diabetes, and cardiovascular disease later in life. Emerging evidence suggests that changes in placental function play a role in linking altered maternal nutrition in pregnancy to the subsequent development of adult disease. The susceptibility for disease in response to an adverse intrauterine environment differs distinctly between boys and girls, with girls typically having better outcomes. Here, we tested the hypothesis that regulation of the placental transcriptome by maternal nutrient reduction (NR) is dependent on fetal sex. We used a nonhuman primate model of NR in which maternal global food intake was reduced by 30% in baboons starting at gestational day (GD) 30. At GD 165 (term = GD 183), placental genome expression profiling of 6 control (n = 3 females, 3 males) and 6 nutrient restricted (n = 3 females, 3 males) fetuses was carried out followed by bioinformatic analysis. Surprisingly, there was no coordinated placental molecular response to decreased nutrient availability when analyzing the data without accounting for fetal sex. In contrast, female placentas exhibited a highly coordinated response that included upregulation of genes in networks, pathways, and functional groups related to programmed cell death and downregulation of genes in networks, pathways, and functional groups associated with cell proliferation. These changes were not apparent in the male placentas. Our data support the concept that female placentas initiate complex adaptive responses to an adverse intrauterine environment, which may contribute to increased survival and better pregnancy outcomes in girls.

摘要

母体营养不足会增加围产期并发症的风险,并使后代更容易在以后的生活中患上肥胖症、糖尿病和心血管疾病。新出现的证据表明,胎盘功能的变化在将妊娠期间母体营养的改变与成年后疾病的发展联系起来方面起着作用。胎儿对不利宫内环境的易感性在男孩和女孩之间有明显的区别,女孩通常有更好的结果。在这里,我们检验了这样一个假设,即母体营养减少(NR)对胎盘转录组的调节取决于胎儿的性别。我们使用了一种非人类灵长类动物的 NR 模型,其中母狨猴的全球食物摄入量从妊娠第 30 天开始减少 30%。在 GD 165(足月= GD 183)时,对 6 个对照组(n=3 个雌性,3 个雄性)和 6 个营养受限组(n=3 个雌性,3 个雄性)的胎儿进行胎盘基因组表达谱分析,然后进行生物信息学分析。令人惊讶的是,当不考虑胎儿性别分析数据时,没有发现协调一致的胎盘分子对营养减少的反应。相比之下,雌性胎盘表现出高度协调的反应,包括与程序性细胞死亡相关的网络、途径和功能组中的基因上调,以及与细胞增殖相关的网络、途径和功能组中的基因下调。这些变化在雄性胎盘中并不明显。我们的数据支持这样一种概念,即雌性胎盘对不利的宫内环境会启动复杂的适应性反应,这可能有助于女孩的生存和更好的妊娠结局。

相似文献

1
Expression of the placental transcriptome in maternal nutrient reduction in baboons is dependent on fetal sex.
J Nutr. 2013 Nov;143(11):1698-708. doi: 10.3945/jn.112.172148. Epub 2013 Sep 18.
2
Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression.
J Physiol. 2006 Apr 1;572(Pt 1):67-85. doi: 10.1113/jphysiol.2006.106872. Epub 2006 Mar 2.
3
Reduced placental amino acid transport in response to maternal nutrient restriction in the baboon.
Am J Physiol Regul Integr Comp Physiol. 2015 Oct;309(7):R740-6. doi: 10.1152/ajpregu.00161.2015. Epub 2015 Aug 5.
5
Adaptive responses to maternal nutrient restriction alter placental transport in ewes.
Placenta. 2020 Jul;96:1-9. doi: 10.1016/j.placenta.2020.05.002. Epub 2020 May 7.

引用本文的文献

1
Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner.
Front Cell Dev Biol. 2023 Jun 15;11:1178533. doi: 10.3389/fcell.2023.1178533. eCollection 2023.
2
The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies.
Reprod Sci. 2022 Jun;29(6):1895-1907. doi: 10.1007/s43032-021-00780-3. Epub 2021 Oct 26.
4
Sex-specific difference in placental inflammatory transcriptional biomarkers of maternal phthalate exposure: a prospective cohort study.
J Expo Sci Environ Epidemiol. 2020 Sep;30(5):835-844. doi: 10.1038/s41370-020-0200-z. Epub 2020 Feb 3.
5
Modulation of Placental Gene Expression in Small-for-Gestational-Age Infants.
Genes (Basel). 2020 Jan 10;11(1):80. doi: 10.3390/genes11010080.
6
Strength of nonhuman primate studies of developmental programming: review of sample sizes, challenges, and steps for future work.
J Dev Orig Health Dis. 2020 Jun;11(3):297-306. doi: 10.1017/S2040174419000539. Epub 2019 Sep 30.
7
Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta.
Epigenetics. 2019 Oct;14(10):1030-1039. doi: 10.1080/15592294.2019.1629234. Epub 2019 Jun 14.
8
Analysis of serum changes in response to a high fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis.
PLoS One. 2019 Apr 5;14(4):e0214487. doi: 10.1371/journal.pone.0214487. eCollection 2019.
9
Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR.
Biochim Biophys Acta Mol Basis Dis. 2020 Feb 1;1866(2):165373. doi: 10.1016/j.bbadis.2018.12.024. Epub 2019 Jan 23.
10
Effect of moderate, 30 percent global maternal nutrient reduction on fetal and postnatal baboon phenotype.
J Med Primatol. 2017 Dec;46(6):293-303. doi: 10.1111/jmp.12290. Epub 2017 Jul 26.

本文引用的文献

1
Repertoire of endothelial progenitor cells mobilized by femoral artery ligation: a nonhuman primate study.
J Cell Mol Med. 2012 Sep;16(9):2060-73. doi: 10.1111/j.1582-4934.2011.01501.x.
2
Review: The feto-placental unit, pregnancy pathology and impact on long term maternal health.
Placenta. 2012 Feb;33 Suppl:S37-41. doi: 10.1016/j.placenta.2011.11.005. Epub 2011 Nov 26.
4
Hungry in the womb: what are the consequences? Lessons from the Dutch famine.
Maturitas. 2011 Oct;70(2):141-5. doi: 10.1016/j.maturitas.2011.06.017. Epub 2011 Jul 28.
5
PPARγ and human trophoblast differentiation.
J Reprod Immunol. 2011 Jun;90(1):41-9. doi: 10.1016/j.jri.2011.05.003. Epub 2011 Jun 24.
6
Sex-specific differences in placental global gene expression in pregnancies complicated by asthma.
Placenta. 2011 Aug;32(8):570-8. doi: 10.1016/j.placenta.2011.05.005. Epub 2011 Jun 8.
7
8
Effects of famine on placental size and efficiency.
Placenta. 2011 May;32(5):395-9. doi: 10.1016/j.placenta.2011.03.001. Epub 2011 Mar 24.
9
Placental regulation of peptide hormone and growth factor activity by proMBP.
Biol Reprod. 2011 Jun;84(6):1077-86. doi: 10.1095/biolreprod.110.090209. Epub 2011 Jan 26.
10
PPARgamma in placental angiogenesis.
Endocrinology. 2010 Oct;151(10):4969-81. doi: 10.1210/en.2010-0131. Epub 2010 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验