Suppr超能文献

耗散粒子动力学研究棒状刚性链聚合物在向列相中的平移扩散。

Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase.

机构信息

Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

J Chem Phys. 2013 Sep 14;139(10):104902. doi: 10.1063/1.4820134.

Abstract

In this study, dissipative particle dynamics (DPD) method was employed to investigate the translational diffusion of rodlike polymer in its nematic phase. The polymer chain was modeled by a rigid rod composed of consecutive DPD particles and solvent was represented by independent DPD particles. To fully understand the translational motion of the rods in the anisotropic phase, four diffusion coefficients, D∥(u), D⊥(u), D∥(n), D⊥(n) were obtained from the DPD simulation. By definition, D∥(n) and D⊥(n) denote the diffusion coefficients parallel and perpendicular to the nematic director, while D∥(u) and D⊥(u) denote the diffusion coefficients parallel and perpendicular to the long axis of a rigid rod u. In the simulation, the velocity auto-correlation functions were used to calculate the corresponding diffusion coefficients from the simulated velocity of the rods. Simulation results show that the variation of orientational order caused by concentration and temperature changes has substantial influences on D∥(u) and D⊥(u). In the nematic phase, the changes of concentration and temperature will result in a change of local environment of rods, which directly influence D∥(u) and D⊥(u). Both D∥(n) and D⊥(n) can be represented as averages of D∥(u) and D⊥(u), and the weighted factors are functions of the orientational order parameter S2. The effect of concentration and temperature on D∥(n) and D⊥(n) demonstrated by the DPD simulation can be rationally interpreted by considering their influences on D∥(u), D⊥(u) and the order parameter S2.

摘要

在本研究中,我们采用耗散粒子动力学(DPD)方法研究了棒状聚合物在向列相中的平移扩散。聚合物链由刚性棒组成,刚性棒由连续的 DPD 粒子组成,溶剂由独立的 DPD 粒子表示。为了充分了解棒在各向异性相中的平移运动,我们从 DPD 模拟中得到了四个扩散系数,即 D∥(u)、D⊥(u)、D∥(n)和 D⊥(n)。根据定义,D∥(n)和 D⊥(n)分别表示平行和垂直于向列型 director 的扩散系数,而 D∥(u)和 D⊥(u)分别表示平行和垂直于刚性棒 u 的长轴的扩散系数。在模拟中,我们使用速度自相关函数从棒的模拟速度计算相应的扩散系数。模拟结果表明,浓度和温度变化引起的取向序的变化对 D∥(u)和 D⊥(u)有很大的影响。在向列相中,浓度和温度的变化会导致棒的局部环境发生变化,这直接影响 D∥(u)和 D⊥(u)。D∥(n)和 D⊥(n)都可以表示为 D∥(u)和 D⊥(u)的平均值,而加权因子是取向序参量 S2 的函数。通过 DPD 模拟展示的浓度和温度对 D∥(n)和 D⊥(n)的影响可以通过考虑它们对 D∥(u)、D⊥(u)和取向序参量 S2 的影响来合理解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验