Suppr超能文献

多假设跟踪在杂乱生物图像序列中的应用。

Multiple hypothesis tracking for cluttered biological image sequences.

机构信息

New York University School of Medicine, New York.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2736-3750. doi: 10.1109/TPAMI.2013.97.

Abstract

In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.

摘要

在本文中,我们提出了一种同时跟踪生物图像序列中数千个目标的方法,这在现代生物学中具有重要意义。由于问题的复杂性和固有随机性,我们提出了一个统一的概率框架来跟踪显微镜图像中的生物粒子。该框架包括粒子运动和存在以及荧光图像特征的现实模型。对于跟踪提取过程本身,非常杂乱的条件促使我们采用多帧方法,以增强对成像条件差和目标随机运动的跟踪决策鲁棒性。我们通过将多假设跟踪算法适应于所提出的框架来解决大规模问题,从而得到一种在模型复杂性和跟踪过程的计算成本之间具有良好折衷的方法。与生物成像的最新跟踪技术相比,尽管成像条件极差且目标密集,但所提出的算法是唯一能够提供高质量结果的方法。因此,我们展示了先进的贝叶斯跟踪技术在准确计算建模动态生物过程中的优势,这有望在该领域取得进一步发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验