Richens Jennifer H, Dmitrieva Mariia, Zenner Helen L, Muschalik Nadine, Butler Richard, Glashauser Jade, Camelo Carolina, Luschnig Stefan, Munro Sean, Rittscher Jens, St Johnston Daniel
The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
Institute of Biomedical Engineering (IBME), Department of Engineering Science and the Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom.
PLoS Biol. 2025 Apr 10;23(4):e3003099. doi: 10.1371/journal.pbio.3003099. eCollection 2025 Apr.
Understanding how specific secretory cargoes are targeted to distinct domains of the plasma membrane in epithelial cells requires analyzing the trafficking of post-Golgi vesicles to their sites of secretion. We used the RUSH (retention using selective hooks) system to synchronously release an apical cargo, Cadherin 99C (Cad99C), and a basolateral cargo, the ECM protein Nidogen, from the endoplasmic reticulum and followed their movements to the plasma membrane. We also developed an interactive vesicle tracking framework, MSP-tracker and viewer, that exploits developments in computer vision and deep learning to determine vesicle trajectories in a noisy environment without the need for extensive training data. MSP-tracker outperformed other tracking software in detecting and tracking post-Golgi vesicles, revealing that Cad99c vesicles predominantly move apically with a mean speed of 1.1µm/sec. This is reduced to 0.85 µm/sec by a dominant slow dynein mutant, demonstrating that dynein transports Cad99C vesicles to the apical cortex. Furthermore, both the dynein mutant and microtubule depolymerization cause lateral Cad99C secretion. Thus, microtubule organization plays a central role in targeting apical secretion, suggesting that Drosophila does not have distinct apical versus basolateral vesicle fusion machinery. Nidogen vesicles undergo planar-polarized transport to the leading edge of follicle cells as they migrate over the ECM, whereas most Collagen is secreted at trailing edges. The follicle cells therefore bias secretion of different ECM components to opposite sides of the cell, revealing that the secretory pathway is more spatially organized than previously thought.
了解特定分泌货物如何靶向上皮细胞质膜的不同区域,需要分析高尔基体后囊泡向其分泌位点的运输过程。我们使用RUSH(利用选择性钩子进行保留)系统,从内质网中同步释放顶端货物钙黏蛋白99C(Cad99C)和基底外侧货物细胞外基质蛋白巢蛋白,并追踪它们向质膜的移动。我们还开发了一个交互式囊泡追踪框架MSP-tracker和查看器,该框架利用计算机视觉和深度学习的发展成果,在无需大量训练数据的嘈杂环境中确定囊泡轨迹。MSP-tracker在检测和追踪高尔基体后囊泡方面优于其他追踪软件,显示Cad99c囊泡主要以平均速度1.1µm/秒向顶端移动。一个显性慢速动力蛋白突变体将其速度降低到0.85µm/秒,表明动力蛋白将Cad99C囊泡运输到顶端皮质。此外,动力蛋白突变体和微管解聚都会导致Cad99C向侧面分泌。因此,微管组织在靶向顶端分泌中起核心作用,这表明果蝇没有明显的顶端与基底外侧囊泡融合机制。巢蛋白囊泡在卵泡细胞迁移到细胞外基质上时,经历平面极化运输到卵泡细胞的前缘,而大多数胶原蛋白则在后端分泌。因此,卵泡细胞将不同细胞外基质成分的分泌偏向细胞的相反两侧,这表明分泌途径在空间上的组织比以前认为的更加有序。