Suppr超能文献

网络中可视化模糊重叠社区。

Visualizing fuzzy overlapping communities in networks.

机构信息

VISUS, University of Stuttgart.

出版信息

IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2486-95. doi: 10.1109/TVCG.2013.232.

Abstract

An important feature of networks for many application domains is their community structure. This is because objects within the same community usually have at least one property in common. The investigation of community structure can therefore support the understanding of object attributes from the network topology alone. In real-world systems, objects may belong to several communities at the same time, i.e., communities can overlap. Analyzing fuzzy community memberships is essential to understand to what extent objects contribute to different communities and whether some communities are highly interconnected. We developed a visualization approach that is based on node-link diagrams and supports the investigation of fuzzy communities in weighted undirected graphs at different levels of detail. Starting with the network of communities, the user can continuously drill down to the network of individual nodes and finally analyze the membership distribution of nodes of interest. Our approach uses layout strategies and further visual mappings to graphically encode the fuzzy community memberships. The usefulness of our approach is illustrated by two case studies analyzing networks of different domains: social networking and biological interactions. The case studies showed that our layout and visualization approach helps investigate fuzzy overlapping communities. Fuzzy vertices as well as the different communities to which they belong can be easily identified based on node color and position.

摘要

网络的一个重要特征是其社区结构,这在许多应用领域都很重要。这是因为同一社区中的对象通常至少具有一个共同属性。因此,社区结构的研究可以仅从网络拓扑结构来支持对对象属性的理解。在实际系统中,对象可能同时属于多个社区,即社区可以重叠。分析模糊的社区成员资格对于理解对象在多大程度上对不同的社区做出贡献以及某些社区之间的高度互联程度至关重要。我们开发了一种基于节点链接图的可视化方法,支持在不同详细程度下分析加权无向图中的模糊社区。从社区网络开始,用户可以不断深入到单个节点的网络,最终分析感兴趣节点的成员资格分布。我们的方法使用布局策略和进一步的视觉映射来图形化地编码模糊社区成员资格。通过分析两个不同领域的网络(社交网络和生物相互作用)的案例研究,说明了我们方法的有效性。案例研究表明,我们的布局和可视化方法有助于调查模糊重叠社区。基于节点颜色和位置,可以轻松识别模糊顶点及其所属的不同社区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验