Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC.
Biomaterials. 2013 Dec;34(37):9441-50. doi: 10.1016/j.biomaterials.2013.09.010. Epub 2013 Sep 17.
Cell transplantation for therapeutic neovascularization holds great promise for treating ischemic diseases. This work prepared three-dimensional aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs) with different levels of internal hypoxia by a methylcellulose hydrogel system. We found that few apoptosis occurred in these cell aggregates, despite developing a hypoxic microenvironment in their inner cores. Via effectively switching on the hypoxia-inducible factor-1α-dependent angiogenic mechanisms, culturing the internally hypoxic HUVEC/cbMSC aggregates on Matrigel resulted in formation of extensive and persistent tubular networks and significant upregulation of pro-angiogenic genes. As the level of internal hypoxia created in cell aggregates increased, the robustness of the tubular structures developed on Matrigel increased, and expression levels of the pro-angiogenic genes also elevated. Transplantation of hypoxic HUVEC/cbMSC aggregates into a mouse model of an ischemic limb significantly promoted formation of functional vessels, improved regional blood perfusion, and attenuated muscle atrophy and bone losses, thereby rescuing tissue degeneration. Notably, their therapeutic efficacy was clearly dependent upon the level of internal hypoxia established in cell aggregates. These analytical results demonstrate that by establishing a hypoxic environment in HUVEC/cbMSC aggregates, their potential for therapeutic neovascularization can be markedly enhanced.
细胞移植治疗性血管新生在治疗缺血性疾病方面具有巨大的潜力。本研究通过甲基纤维素水凝胶系统,制备了具有不同内部低氧水平的人脐静脉内皮细胞(HUVEC)和脐血间充质干细胞(cbMSC)的三维聚集物。我们发现,尽管在细胞聚集物的核心区域形成了低氧微环境,但其中的细胞凋亡很少发生。通过有效激活缺氧诱导因子-1α(HIF-1α)依赖性血管生成机制,在 Matrigel 上培养内部低氧的 HUVEC/cbMSC 聚集物,可形成广泛且持久的管状网络,并显著上调促血管生成基因。随着细胞聚集物中所产生的内部低氧水平的增加,在 Matrigel 上形成的管状结构的稳健性增加,促血管生成基因的表达水平也升高。将低氧 HUVEC/cbMSC 聚集物移植到缺血肢体的小鼠模型中,可显著促进功能性血管的形成,改善局部血液灌注,并减轻肌肉萎缩和骨质流失,从而挽救组织退化。值得注意的是,其治疗效果明显取决于细胞聚集物中建立的内部低氧水平。这些分析结果表明,通过在 HUVEC/cbMSC 聚集物中建立低氧环境,可以显著增强其治疗性血管新生的潜力。