Centre de Génétique Moléculaire, Université Paris-Sud, avenue de la Terrasse, 91198 Gif sur Yvette, France.
Cell Metab. 2013 Oct 1;18(4):567-77. doi: 10.1016/j.cmet.2013.08.017. Epub 2013 Sep 19.
Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders.
在过去的几十年中,我们对参与线粒体生物发生的机制的理解不断扩展,但对于如何调节这些机制以优化线粒体的功能知之甚少。在这里,我们表明,涉及复合物 III 组装的伴侣蛋白 Bcs1 的 ATP 结合域中的突变可以通过降低 ATP 合酶的 ATP 水解活性的突变来挽救。我们的结果揭示了一种 Bcs1 介导的控制回路,其中复合物 III 的生物发生受线粒体能量转导活性的调节。尽管 ATP 是众所周知的许多细胞活动的调节剂,但我们在这里表明,ATP 也可以通过控制参与其组装的特定伴侣蛋白来调节酶的生物发生。我们的研究进一步强调了线粒体内部腺嘌呤核苷酸池作为治疗基于 Bcs1 的疾病的潜在靶标。