Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
J Mol Biol. 2014 Jan 9;426(1):199-214. doi: 10.1016/j.jmb.2013.09.016. Epub 2013 Sep 19.
Streptavidin is one of the most important hubs for molecular biology, either multimerizing biomolecules, bridging one molecule to another, or anchoring to a biotinylated surface/nanoparticle. Streptavidin has the advantage of rapid ultra-stable binding to biotin. However, the ability of streptavidin to bind four biotinylated molecules in a heterogeneous manner is often limiting. Here, we present an efficient approach to isolate streptavidin tetramers with two biotin-binding sites in a precise arrangement, cis or trans. We genetically modified specific subunits with negatively charged tags, refolded a mixture of monomers, and used ion-exchange chromatography to resolve tetramers according to the number and orientation of tags. We solved the crystal structures of cis-divalent streptavidin to 1.4Å resolution and trans-divalent streptavidin to 1.6Å resolution, validating the isolation strategy and explaining the behavior of the Dead streptavidin variant. cis- and trans-divalent streptavidins retained tetravalent streptavidin's high thermostability and low off-rate. These defined divalent streptavidins enabled us to uncover how streptavidin binding depends on the nature of the biotin ligand. Biotinylated DNA showed strong negative cooperativity of binding to cis-divalent but not trans-divalent streptavidin. A small biotinylated protein bound readily to cis and trans binding sites. We also solved the structure of trans-divalent streptavidin bound to biotin-4-fluorescein, showing how one ligand obstructs binding to an adjacent biotin-binding site. Using a hexaglutamate tag proved a more powerful way to isolate monovalent streptavidin, for ultra-stable labeling without undesired clustering. These forms of streptavidin allow this key hub to be used with a new level of precision, for homogeneous molecular assembly.
链霉亲和素是分子生物学的最重要的中心之一,无论是将生物分子多聚化、连接一个分子到另一个分子,还是锚定到生物素化的表面/纳米颗粒上。链霉亲和素具有快速超稳定结合生物素的优势。然而,链霉亲和素以异质方式结合四个生物素化分子的能力常常受到限制。在这里,我们提出了一种有效的方法来分离具有两个生物素结合位点的精确排列(顺式或反式)的链霉亲和素四聚体。我们通过带负电荷的标签对特定亚基进行基因修饰,重新折叠单体混合物,并使用离子交换色谱根据标签的数量和方向来分离四聚体。我们解析了顺式二价链霉亲和素至 1.4Å分辨率和反式二价链霉亲和素至 1.6Å分辨率的晶体结构,验证了分离策略,并解释了 Dead 链霉亲和素变体的行为。顺式和反式二价链霉亲和素保留了四价链霉亲和素的高热稳定性和低离解速率。这些定义明确的二价链霉亲和素使我们能够揭示链霉亲和素结合如何取决于生物素配体的性质。生物素化 DNA 对顺式二价但不对反式二价链霉亲和素有强烈的负协同结合。小的生物素化蛋白容易结合顺式和反式结合位点。我们还解析了反式二价链霉亲和素结合生物素-4-荧光素的结构,显示了一个配体如何阻碍与相邻的生物素结合位点的结合。使用六谷氨酸标签被证明是一种更强大的分离单价链霉亲和素的方法,用于超稳定标记而不会产生不必要的聚集。这些形式的链霉亲和素允许这个关键中心以新的精度水平用于同质分子组装。