Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Appl Environ Microbiol. 2013 Dec;79(23):7454-65. doi: 10.1128/AEM.02202-13. Epub 2013 Sep 20.
The Grand River (Ontario, Canada) is impacted by wastewater treatment plants (WWTPs) that release ammonia (NH3 and NH4+) into the river. In-river microbial communities help transform this ammonia into more oxidized compounds (e.g., NO3- or N2), although the spatial distribution and relative abundance of freshwater autotrophic ammonia-oxidizing prokaryotes (AOP) are not well characterized. This study investigated freshwater N cycling within the Grand River, focusing on sediment and water columns, both inside and outside a WWTP effluent plume. The diversity, relative abundance, and nitrification activity of AOP were investigated by denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and reverse transcriptase qPCR (RT-qPCR), targeting both 16S rRNA and functional genes, together with activity assays. The analysis of bacterial 16S rRNA gene fingerprints showed that the WWTP effluent strongly affected autochthonous bacterial patterns in the water column but not those associated with sediment nucleic acids. Molecular and activity data demonstrated that ammonia-oxidizing archaea (AOA) were numerically and metabolically dominant in samples taken from outside the WWTP plume, whereas ammonia-oxidizing bacteria (AOB) dominated numerically within the WWTP effluent plume. Potential nitrification rate measurements supported the dominance of AOB activity in downstream sediment. Anaerobic ammonia-oxidizing (anammox) bacteria were detected primarily in sediment nucleic acids. In-river AOA patterns were completely distinct from effluent AOA patterns. This study demonstrates the importance of combined molecular and activity-based studies for disentangling molecular signatures of wastewater effluent from autochthonous prokaryotic communities.
加拿大安大略省的格兰德河(Grand River)受到将氨(NH3 和 NH4+)排入河流的废水处理厂(WWTP)的影响。河流中的微生物群落有助于将这种氨转化为更氧化的化合物(例如,NO3-或 N2),尽管淡水自养氨氧化原核生物(AOP)的空间分布和相对丰度尚未得到很好的描述。本研究调查了格兰德河内部的淡水氮循环,重点是 WWTP 废水羽流内外的沉积物和水柱。通过变性梯度凝胶电泳(DGGE)、定量实时 PCR(qPCR)和逆转录 qPCR(RT-qPCR),针对 16S rRNA 和功能基因,同时进行活性测定,研究了 AOP 的多样性、相对丰度和硝化活性。细菌 16S rRNA 基因指纹图谱的分析表明,WWTP 废水强烈影响水柱中的自生细菌模式,但不影响与沉积物核酸相关的模式。分子和活性数据表明,氨氧化古菌(AOA)在 WWTP 羽流外的样本中在数量上和代谢上均占优势,而氨氧化细菌(AOB)在 WWTP 废水羽流内的数量上占优势。潜在硝化速率测量结果支持下游沉积物中 AOB 活性的主导地位。厌氧氨氧化(anammox)细菌主要存在于沉积物核酸中。河流中的 AOA 模式与废水 AOA 模式完全不同。本研究表明,综合分子和基于活性的研究对于将废水排放的分子特征与自生原核生物群落区分开来非常重要。