Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, Paseo Belén 15, 47011, Valladolid, Spain,
Med Biol Eng Comput. 2013 Dec;51(12):1367-80. doi: 10.1007/s11517-013-1109-7. Epub 2013 Sep 22.
This paper aims at detecting sleep apnoea-hypopnoea syndrome (SAHS) from single-channel airflow (AF) recordings. The study involves 148 subjects. Our proposal is based on estimating the apnoea-hypopnoea index (AHI) after global analysis of AF, including the investigation of respiratory rate variability (RRV). We exhaustively characterize both AF and RRV by extracting spectral, nonlinear, and statistical features. Then, the fast correlation-based filter is used to select those relevant and non-redundant. Multiple linear regression, multi-layer perceptron (MLP), and radial basis functions are fed with the features to estimate AHI. A conventional approach, based on scoring apnoeas and hypopnoeas, is also assessed for comparison purposes. An MLP model trained with AF and RRV selected features achieved the highest agreement with the true AHI (intra-class correlation coefficient = 0.849). It also showed the highest diagnostic ability, reaching 92.5 % sensitivity, 89.5 % specificity and 91.5 % accuracy. This suggests that AF and RRV can complement each other to estimate AHI and help in SAHS diagnosis.
本文旨在通过单通道气流 (AF) 记录检测睡眠呼吸暂停低通气综合征 (SAHS)。该研究涉及 148 名受试者。我们的建议是基于对 AF 进行全局分析后估计呼吸暂停低通气指数 (AHI),包括对呼吸率变异性 (RRV) 的研究。我们通过提取光谱、非线性和统计特征来全面描述 AF 和 RRV。然后,使用快速相关滤波器选择那些相关且非冗余的特征。多元线性回归、多层感知器 (MLP) 和径向基函数被用于基于特征估计 AHI。还评估了一种基于评分的传统方法,以便进行比较。使用 AF 和 RRV 选择特征训练的 MLP 模型与真实 AHI 的一致性最高 (组内相关系数=0.849)。它还表现出最高的诊断能力,达到 92.5%的灵敏度、89.5%的特异性和 91.5%的准确性。这表明 AF 和 RRV 可以相互补充来估计 AHI,并有助于 SAHS 的诊断。