Suppr超能文献

阿尔茨海默病和轻度认知障碍中自发脑电活动的自动多类分类

Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer's Disease and Mild Cognitive Impairment.

作者信息

Ruiz-Gómez Saúl J, Gómez Carlos, Poza Jesús, Gutiérrez-Tobal Gonzalo C, Tola-Arribas Miguel A, Cano Mónica, Hornero Roberto

机构信息

Biomedical Engineering Group, E.T.S.I. de Telecomunicación, Universidad de Valladolid, 47011 Valladolid, Spain.

Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain.

出版信息

Entropy (Basel). 2018 Jan 9;20(1):35. doi: 10.3390/e20010035.

Abstract

The discrimination of early Alzheimer's disease (AD) and its prodromal form (i.e., mild cognitive impairment, MCI) from cognitively healthy control (HC) subjects is crucial since the treatment is more effective in the first stages of the dementia. The aim of our study is to evaluate the usefulness of a methodology based on electroencephalography (EEG) to detect AD and MCI. EEG rhythms were recorded from 37 AD patients, 37 MCI subjects and 37 HC subjects. Artifact-free trials were analyzed by means of several spectral and nonlinear features: relative power in the conventional frequency bands, median frequency, individual alpha frequency, spectral entropy, Lempel-Ziv complexity, central tendency measure, sample entropy, fuzzy entropy, and auto-mutual information. Relevance and redundancy analyses were also conducted through the fast correlation-based filter (FCBF) to derive an optimal set of them. The selected features were used to train three different models aimed at classifying the trials: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and multi-layer perceptron artificial neural network (MLP). Afterwards, each subject was automatically allocated in a particular group by applying a trial-based majority vote procedure. After feature extraction, the FCBF method selected the optimal set of features: individual alpha frequency, relative power at delta frequency band, and sample entropy. Using the aforementioned set of features, MLP showed the highest diagnostic performance in determining whether a subject is not healthy (sensitivity of 82.35% and positive predictive value of 84.85% for HC vs. all classification task) and whether a subject does not suffer from AD (specificity of 79.41% and negative predictive value of 84.38% for AD vs. all comparison). Our findings suggest that our methodology can help physicians to discriminate AD, MCI and HC.

摘要

将早期阿尔茨海默病(AD)及其前驱形式(即轻度认知障碍,MCI)与认知健康对照(HC)受试者区分开来至关重要,因为在痴呆症的第一阶段进行治疗效果更佳。我们研究的目的是评估基于脑电图(EEG)检测AD和MCI的方法的实用性。记录了37名AD患者、37名MCI受试者和37名HC受试者的脑电节律。通过几种频谱和非线性特征对无伪迹试验进行分析:传统频段的相对功率、中位数频率、个体阿尔法频率、频谱熵、莱姆普尔-齐夫复杂度、中心趋势度量、样本熵、模糊熵和自互信息。还通过基于快速相关性的滤波器(FCBF)进行相关性和冗余分析,以得出一组最优特征。所选特征用于训练三种不同的模型以对试验进行分类:线性判别分析(LDA)、二次判别分析(QDA)和多层感知器人工神经网络(MLP)。之后,通过应用基于试验的多数投票程序将每个受试者自动分配到特定组中。特征提取后,FCBF方法选择了最优特征集:个体阿尔法频率、δ频段的相对功率和样本熵。使用上述特征集,MLP在确定受试者是否不健康(HC与所有分类任务相比,灵敏度为82.35%,阳性预测值为84.85%)以及受试者是否未患AD(AD与所有比较相比,特异性为79.41%,阴性预测值为84.38%)方面表现出最高的诊断性能。我们的研究结果表明,我们的方法可以帮助医生区分AD、MCI和HC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1999/7512207/00b5a61bfd30/entropy-20-00035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验