Suppr超能文献

多尺度非对称正交小波核的线性规划支持向量学习和非线性动态系统辨识。

Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

出版信息

IEEE Trans Cybern. 2014 May;44(5):712-24. doi: 10.1109/TCYB.2013.2279834. Epub 2013 Sep 18.

Abstract

Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

摘要

支持向量回归用于逼近非线性动态系统比支持向量分类中的指示函数逼近更为精细,特别是对于在其采样数据中涉及多个时间尺度的系统。支持向量学习中使用的核决定了支持向量机可以从中提取解决方案的函数类别,核的选择对支持向量机的性能有重大影响。在本文中,为了弥合小波多分辨率分析和核学习之间的差距,利用闭式正交小波来构建新的用于线性规划支持向量学习的多尺度非对称正交小波核。闭式多尺度正交小波核为通过二进扩展实现多尺度核学习提供了一个系统框架,并且还使我们能够有效地表示复杂的非线性动态。为了展示所提出的多尺度小波核在识别复杂非线性动态系统方面的优越性,提出了两个案例研究,旨在建立基准数据集上的并行模型。开发解决长期/中期预测问题的并行模型比仅需要一步超前预测的串联-并行模型的识别更为复杂和具有挑战性。仿真结果说明了所提出的多尺度核学习的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验