Suppr超能文献

糖纳米颗粒中的 SDF-1α 表现出完全的活性,并降低了大鼠的肺动脉高压。

SDF-1α in glycan nanoparticles exhibits full activity and reduces pulmonary hypertension in rats.

机构信息

Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States.

出版信息

Biomacromolecules. 2013 Nov 11;14(11):4009-20. doi: 10.1021/bm401122q. Epub 2013 Oct 18.

Abstract

To establish a homing signal in the lung to recruit circulating stem cells for tissue repair, we formulated a nanoparticle, SDF-1α NP, by complexing SDF-1α with dextran sulfate and chitosan. The data show that SDF-1α was barely released from the nanoparticles over an extended period of time in vitro (3% in 7 days at 37 °C); however, incorporated SDF-1α exhibited full chemotactic activity and receptor activation compared to its free form. The nanoparticles were not endocytosed after incubation with Jurkat cells. When aerosolized into the lungs of rats, SDF-1α NP displayed a greater retention time compared to free SDF-1α (64 vs 2% remaining at 16 h). In a rat model of monocrotaline-induced lung injury, SDF-1α NP, but not free form SDF-1α, was found to reduce pulmonary hypertension. These data suggest that the nanoparticle formulation protected SDF-1α from rapid clearance in the lung and sustained its biological function in vivo.

摘要

为了在肺部建立归巢信号,以招募循环干细胞进行组织修复,我们通过将 SDF-1α 与葡聚糖硫酸盐和壳聚糖复合,制备了一种纳米颗粒 SDF-1α NP。数据显示,SDF-1α 在体外长时间内(37°C 下 7 天内 3%)几乎不会从纳米颗粒中释放出来;然而,与游离形式相比,掺入的 SDF-1α 表现出完全的趋化活性和受体激活。Jurkat 细胞孵育后,纳米颗粒不会被内吞。当雾化到大鼠肺部时,SDF-1α NP 与游离 SDF-1α 相比,显示出更长的保留时间(16 小时时分别为 64%和 2%)。在野百合碱诱导的肺损伤大鼠模型中,SDF-1α NP 可降低肺动脉高压,而游离形式的 SDF-1α 则没有这种作用。这些数据表明,纳米颗粒制剂可防止 SDF-1α 在肺部快速清除,并在体内维持其生物学功能。

相似文献

1
SDF-1α in glycan nanoparticles exhibits full activity and reduces pulmonary hypertension in rats.
Biomacromolecules. 2013 Nov 11;14(11):4009-20. doi: 10.1021/bm401122q. Epub 2013 Oct 18.
3
Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles.
Int J Nanomedicine. 2016 Nov 18;11:6149-6159. doi: 10.2147/IJN.S119174. eCollection 2016.
6
Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles.
Acta Biomater. 2012 Mar;8(3):1048-56. doi: 10.1016/j.actbio.2011.12.009. Epub 2011 Dec 13.
8
In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration.
Carbohydr Polym. 2018 Feb 15;182:215-224. doi: 10.1016/j.carbpol.2017.10.090. Epub 2017 Oct 28.
10
Quantitation of CXCR4 expression in myocardial infarction using 99mTc-labeled SDF-1alpha.
J Nucl Med. 2008 Jun;49(6):963-9. doi: 10.2967/jnumed.107.050054. Epub 2008 May 15.

引用本文的文献

2
Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment.
Pharmaceutics. 2022 Jun 1;14(6):1189. doi: 10.3390/pharmaceutics14061189.
3
A crosslinked dextran sulfate-chitosan nanoparticle for delivery of therapeutic heparin-binding proteins.
Int J Pharm. 2021 Dec 15;610:121287. doi: 10.1016/j.ijpharm.2021.121287. Epub 2021 Nov 11.
4
Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension.
Adv Exp Med Biol. 2021;1303:275-303. doi: 10.1007/978-3-030-63046-1_15.
8
Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts.
Chem Rev. 2018 Aug 22;118(16):7409-7531. doi: 10.1021/acs.chemrev.7b00678. Epub 2018 Jul 27.
9
Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles.
Int J Nanomedicine. 2016 Nov 18;11:6149-6159. doi: 10.2147/IJN.S119174. eCollection 2016.

本文引用的文献

1
Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms.
Nanomedicine. 2013 Aug;9(6):786-94. doi: 10.1016/j.nano.2013.01.007. Epub 2013 Feb 20.
2
Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells.
Biol Cell. 2012 Dec;104(12):722-37. doi: 10.1111/boc.201200022. Epub 2012 Nov 2.
3
4
Stromal cell-derived factor-1 alpha (SDF-1α) improves neural recovery after spinal cord contusion in rats.
Brain Res. 2012 Sep 14;1473:214-26. doi: 10.1016/j.brainres.2012.07.037. Epub 2012 Jul 27.
5
Chemokines and adult bone marrow stem cells.
Immunol Lett. 2012 Jul 30;145(1-2):47-54. doi: 10.1016/j.imlet.2012.04.009.
6
Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles.
Pharmacol Rev. 2012 Jul;64(3):505-19. doi: 10.1124/pr.111.005363. Epub 2012 Apr 27.
7
The SDF-1/CXCR4 axis in stem cell preconditioning.
Cardiovasc Res. 2012 Jun 1;94(3):400-7. doi: 10.1093/cvr/cvs132. Epub 2012 Mar 26.
8
The monocrotaline model of pulmonary hypertension in perspective.
Am J Physiol Lung Cell Mol Physiol. 2012 Feb 15;302(4):L363-9. doi: 10.1152/ajplung.00212.2011. Epub 2011 Sep 30.
9
Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
Exp Neurol. 2011 Oct;231(2):284-94. doi: 10.1016/j.expneurol.2011.07.002. Epub 2011 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验