Suppr超能文献

抑癌基因 RPL5/RPL11 的缺失不会引起细胞周期停滞,而是由于核糖体含量和翻译能力降低而阻碍增殖。

Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity.

机构信息

Division of Hematology and Oncology, Department of Internal Medicine.

出版信息

Mol Cell Biol. 2013 Dec;33(23):4660-71. doi: 10.1128/MCB.01174-13. Epub 2013 Sep 23.

Abstract

Humans have evolved elaborate mechanisms to activate p53 in response to insults that lead to cancer, including the binding and inhibition of Hdm2 by the 60S ribosomal proteins (RPs) RPL5 and RPL11. This same mechanism appears to be activated upon impaired ribosome biogenesis, a risk factor for cancer initiation. As loss of RPL5/RPL11 abrogates ribosome biogenesis and protein synthesis to the same extent as loss of other essential 60S RPs, we reasoned the loss of RPL5 and RPL11 would induce a p53-independent cell cycle checkpoint. Unexpectedly, we found that their depletion in primary human lung fibroblasts failed to induce cell cycle arrest but strongly suppressed cell cycle progression. We show that the effects on cell cycle progression stemmed from reduced ribosome content and translational capacity, which suppressed the accumulation of cyclins at the translational level. Thus, unlike other tumor suppressors, RPL5/RPL11 play an essential role in normal cell proliferation, a function cells have evolved to rely on in lieu of a cell cycle checkpoint.

摘要

人类已经进化出了复杂的机制来激活 p53,以应对导致癌症的损伤,包括 60S 核糖体蛋白(RPs)RPL5 和 RPL11 与 Hdm2 的结合和抑制。这一相同的机制似乎在核糖体生物发生受损时被激活,而核糖体生物发生受损是癌症发生的一个风险因素。由于 RPL5/RPL11 的缺失对核糖体生物发生和蛋白质合成的影响与其他必需的 60S RPs 相同,我们推断 RPL5 和 RPL11 的缺失会诱导 p53 非依赖性细胞周期检查点。出乎意料的是,我们发现它们在原代人肺成纤维细胞中的缺失未能诱导细胞周期停滞,但强烈抑制了细胞周期进程。我们表明,对细胞周期进程的影响源于核糖体含量和翻译能力的降低,这抑制了细胞在翻译水平上 cyclin 的积累。因此,与其他肿瘤抑制因子不同,RPL5/RPL11 在正常细胞增殖中发挥着重要作用,这是细胞在没有细胞周期检查点的情况下进化出的一种功能。

相似文献

4
5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.
Cell Rep. 2013 Jul 11;4(1):87-98. doi: 10.1016/j.celrep.2013.05.045. Epub 2013 Jul 3.
5
Oncogenic MYC Induces the Impaired Ribosome Biogenesis Checkpoint and Stabilizes p53 Independent of Increased Ribosome Content.
Cancer Res. 2019 Sep 1;79(17):4348-4359. doi: 10.1158/0008-5472.CAN-18-2718. Epub 2019 Jul 10.
6
Ribosomal protein L4 is a novel regulator of the MDM2-p53 loop.
Oncotarget. 2016 Mar 29;7(13):16217-26. doi: 10.18632/oncotarget.7479.
7
Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint.
Oncogene. 2020 Apr;39(17):3443-3457. doi: 10.1038/s41388-020-1231-6. Epub 2020 Feb 27.
8
The roles of RRP15 in nucleolar formation, ribosome biogenesis and checkpoint control in human cells.
Oncotarget. 2017 Feb 21;8(8):13240-13252. doi: 10.18632/oncotarget.14658.
10
Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress.
Oncogene. 2013 Jan 17;32(3):388-96. doi: 10.1038/onc.2012.63. Epub 2012 Mar 5.

引用本文的文献

1
The Central Role of Ribosomal Proteins in p53 Regulation.
Cancers (Basel). 2025 May 8;17(10):1597. doi: 10.3390/cancers17101597.
4
TAF2, within the TFIID complex, regulates the expression of a subset of protein-coding genes.
Cell Death Discov. 2024 May 21;10(1):244. doi: 10.1038/s41420-024-02017-z.
5
Inhibition of protein translational machinery in triple-negative breast cancer as a promising therapeutic strategy.
Cell Rep Med. 2024 May 21;5(5):101552. doi: 10.1016/j.xcrm.2024.101552. Epub 2024 May 9.
6
Decoding Ribosome Heterogeneity: A New Horizon in Cancer Therapy.
Biomedicines. 2024 Jan 11;12(1):155. doi: 10.3390/biomedicines12010155.
10
DDX24 promotes metastasis by regulating RPL5 in non-small cell lung cancer.
Cancer Med. 2022 Dec;11(23):4513-4525. doi: 10.1002/cam4.4835. Epub 2022 Jul 21.

本文引用的文献

1
5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.
Cell Rep. 2013 Jul 11;4(1):87-98. doi: 10.1016/j.celrep.2013.05.045. Epub 2013 Jul 3.
2
Rate-limiting steps in yeast protein translation.
Cell. 2013 Jun 20;153(7):1589-601. doi: 10.1016/j.cell.2013.05.049.
3
Growth control and ribosomopathies.
Curr Opin Genet Dev. 2013 Feb;23(1):63-71. doi: 10.1016/j.gde.2013.02.001. Epub 2013 Mar 13.
4
Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence.
Mol Cell. 2013 Apr 11;50(1):56-66. doi: 10.1016/j.molcel.2013.02.001. Epub 2013 Mar 7.
5
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20467-72. doi: 10.1073/pnas.1218535109. Epub 2012 Nov 20.
6
Mdm2 in evolution.
Genes Cancer. 2012 Mar;3(3-4):320-4. doi: 10.1177/1947601912458285.
7
Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.
Genes Dev. 2012 Sep 15;26(18):2075-87. doi: 10.1101/gad.197020.112. Epub 2012 Aug 28.
9
Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53.
Cancer Cell. 2012 Jul 10;22(1):51-65. doi: 10.1016/j.ccr.2012.05.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验