Suppr超能文献

在构象动力学的粗粒度模拟中平衡键、非键和类gō项。

Balancing bond, nonbond, and gō-like terms in coarse grain simulations of conformational dynamics.

作者信息

Hills Ronald D

机构信息

Department of Pharmaceutical Sciences, University of New England, Portland, ME, USA.

出版信息

Methods Mol Biol. 2014;1084:123-40. doi: 10.1007/978-1-62703-658-0_7.

Abstract

Characterization of the protein conformational landscape remains a challenging problem, whether it concerns elucidating folding mechanisms, predicting native structures or modeling functional transitions. Coarse-grained molecular dynamics simulation methods enable exhaustive sampling of the energetic landscape at resolutions of biological interest. The general utility of structure-based models is reviewed along with their differing levels of approximation. Simple Gō models incorporate attractive native interactions and repulsive nonnative contacts, resulting in an ideal smooth landscape. Non-Gō coarse-grained models reduce the parameter set as needed but do not include bias to any desired native structure. While non-Gō models have achieved limited success in protein coarse-graining, they can be combined with native structured-based potentials to create a balanced and powerful force field. Recent applications of such Gō-like models have yielded insight into complex folding mechanisms and conformational transitions in large macromolecules. The accuracy and usefulness of reduced representations are also revealed to be a function of the mathematical treatment of the intrinsic bonded topology.

摘要

蛋白质构象景观的表征仍然是一个具有挑战性的问题,无论是涉及阐明折叠机制、预测天然结构还是模拟功能转变。粗粒度分子动力学模拟方法能够在具有生物学意义的分辨率下对能量景观进行详尽采样。本文综述了基于结构的模型的一般效用及其不同程度的近似。简单的Gō模型包含有吸引力的天然相互作用和排斥性的非天然接触,从而产生理想的平滑景观。非Gō粗粒度模型根据需要减少参数集,但不偏向任何所需的天然结构。虽然非Gō模型在蛋白质粗粒度方面取得了有限的成功,但它们可以与基于天然结构的势相结合,以创建一个平衡且强大的力场。此类类似Gō模型的最新应用已经深入了解了大型大分子中的复杂折叠机制和构象转变。简化表示的准确性和有用性也被揭示为是内在键合拓扑数学处理的一个函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验