Stumpff-Kane Andrew W, Maksimiak Katarzyna, Lee Michael S, Feig Michael
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
Proteins. 2008 Mar;70(4):1345-56. doi: 10.1002/prot.21674.
Protein structure refinement from comparative models with the goal of predicting structures at near-experimental accuracy remains an unsolved problem. Structure refinement might be achieved with an iterative protocol where the most native-like structure from a set of decoys generated from an initial model in one cycle is used as the starting structure for the next cycle. Conformational sampling based on the coarse-grained SICHO model, atomic level of detail molecular dynamics simulations, and normal-mode analysis is compared in the context of such a protocol. All of the sampling methods can achieve significant refinement close to experimental structures, although the distribution of structures and the ability to reach native-like structures differs greatly. Implications for the practical application of such sampling methods and the requirements for scoring functions in an iterative refinement protocol are analyzed in the context of theoretical predictions for the distribution of protein-like conformations with a random sampling protocol.
从比较模型中进行蛋白质结构优化,目标是以接近实验精度预测结构,这仍然是一个未解决的问题。结构优化可以通过迭代方案来实现,在该方案中,将一个循环中从初始模型生成的一组诱饵中最接近天然结构的结构用作下一个循环的起始结构。在此类方案的背景下,对基于粗粒度SICHO模型的构象采样、原子水平细节的分子动力学模拟和正常模式分析进行了比较。所有采样方法都能实现接近实验结构的显著优化,尽管结构分布和达到类似天然结构的能力差异很大。在对随机采样方案的类蛋白质构象分布进行理论预测的背景下,分析了此类采样方法在实际应用中的意义以及迭代优化方案中评分函数的要求。