Suppr超能文献

在滑顺条件下,跨步时离轴神经肌肉控制的性别差异。

Gender differences in offaxis neuromuscular control during stepping under a slippery condition.

机构信息

Sensory-Motor Performance Program, Rehabilitation Institute of Chicago, Suite 1406, 345 E. Superior Street, Chicago, IL, 60611, USA.

出版信息

Eur J Appl Physiol. 2013 Nov;113(11):2857-66. doi: 10.1007/s00421-013-2727-3. Epub 2013 Sep 24.

Abstract

PURPOSE

Females are at greater risks of musculoskeletal injuries than are males, which may be related to decreased neuromuscular control in axial and/or frontal planes, offaxis neuromuscular control. The objective of this study was to investigate gender differences in offaxis neuromuscular control during stepping under a slippery condition.

METHODS

Forty-three healthy subjects (21 males and 22 females) performed different stepping tasks under a slippery condition, namely, free pivoting task (FPT) to control axial plane pivoting, free sliding task (FST) to control frontal plane sliding, and free pivoting and sliding task (FPST) to control axial pivoting, and frontal sliding on a custom-made offaxis elliptical trainer.

RESULTS

Compared to males, females showed significantly higher pivoting instability, higher max internal and external pivoting angles, higher mean max medial and lateral sliding distance, and higher entropy of time to peak EMG in the medial and lateral gastrocnemius muscles during the FPST and higher entropy of time to peak EMG in the lateral gastrocnemius muscle during the FPT and FST.

CONCLUSIONS

The findings may help us understand potential injury risk factors associated with gender differences, and provide a basis for developing targeted neuromuscular training to improve offaxis neuromuscular control, and reduce musculoskeletal injuries associated with excessive offaxis loadings.

摘要

目的

女性发生肌肉骨骼损伤的风险高于男性,这可能与轴向和/或额状面下的神经肌肉控制能力下降、离轴神经肌肉控制能力下降有关。本研究旨在探讨在滑溜溜的环境下,不同性别在离轴神经肌肉控制方面的差异。

方法

43 名健康受试者(21 名男性和 22 名女性)在滑溜溜的环境下完成了不同的迈步任务,即自由枢轴任务(FPT)以控制轴向平面枢轴,自由滑动任务(FST)以控制额状面滑动,以及自由枢轴和滑动任务(FPST)以控制轴向枢轴和在定制的离轴椭圆训练器上的额状面滑动。

结果

与男性相比,女性在 FPST 时表现出明显更高的枢轴不稳定性、更高的最大内外部枢轴角度、更高的平均最大内侧和外侧滑动距离,以及更高的内侧和外侧腓肠肌肌电时间峰值的熵,在 FPT 和 FST 时,外侧腓肠肌肌电时间峰值的熵更高。

结论

这些发现可能有助于我们了解与性别差异相关的潜在损伤风险因素,并为开发针对离轴神经肌肉控制的靶向神经肌肉训练提供依据,以减少与过度离轴负荷相关的肌肉骨骼损伤。

相似文献

1
Gender differences in offaxis neuromuscular control during stepping under a slippery condition.
Eur J Appl Physiol. 2013 Nov;113(11):2857-66. doi: 10.1007/s00421-013-2727-3. Epub 2013 Sep 24.
2
Improvement in Offaxis Neuromuscular Control Under Slippery Conditions Following Six-Week Pivoting Leg Neuromuscular Training.
IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):2084-2093. doi: 10.1109/TNSRE.2017.2705664. Epub 2017 May 18.
3
Pivoting neuromuscular control and proprioception in females and males.
Eur J Appl Physiol. 2015 Apr;115(4):775-84. doi: 10.1007/s00421-014-3062-z. Epub 2014 Nov 28.
4
Plane Dependent Subject-Specific Neuromuscular Training for Knee Rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2020 Aug;28(8):1876-1883. doi: 10.1109/TNSRE.2020.3005119. Epub 2020 Jun 26.
5
Effects of pivoting neuromuscular training on pivoting control and proprioception.
Med Sci Sports Exerc. 2014 Jul;46(7):1400-9. doi: 10.1249/MSS.0000000000000249.
6
Offaxis neuromuscular training of knee injuries using an offaxis robotic elliptical trainer.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2081-4. doi: 10.1109/IEMBS.2011.6090386.
7
Learning Patterns of Pivoting Neuromuscular Control Training-Toward a Learning Model for Therapy Scheduling.
IEEE Trans Biomed Eng. 2019 Feb;66(2):383-390. doi: 10.1109/TBME.2018.2842033. Epub 2018 May 30.
9
A pivoting elliptical training system for improving pivoting neuromuscular control and rehabilitating musculoskeletal injuries.
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):860-8. doi: 10.1109/TNSRE.2013.2273874.
10
Improvement in off-axis neuromuscular control through pivoting elliptical training: Implication for knee injury prevention.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4846-9. doi: 10.1109/IEMBS.2010.5627276.

引用本文的文献

1
Age-related differences in pivoting neuromuscular control during a stepping task.
Eur J Appl Physiol. 2025 Sep 17. doi: 10.1007/s00421-025-05986-w.
2
Patients with operative gluteus medius tears often present with a concomitant history of lumbar pathology.
J Orthop. 2023 Nov 14;47:18-22. doi: 10.1016/j.jor.2023.11.025. eCollection 2024 Jan.
3
Plane Dependent Subject-Specific Neuromuscular Training for Knee Rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2020 Aug;28(8):1876-1883. doi: 10.1109/TNSRE.2020.3005119. Epub 2020 Jun 26.
4
Combined Ankle/Knee Stretching and Pivoting Stepping Training for Children With Cerebral Palsy.
IEEE Trans Neural Syst Rehabil Eng. 2019 Sep;27(9):1743-1752. doi: 10.1109/TNSRE.2019.2934139. Epub 2019 Aug 9.
5
Learning Patterns of Pivoting Neuromuscular Control Training-Toward a Learning Model for Therapy Scheduling.
IEEE Trans Biomed Eng. 2019 Feb;66(2):383-390. doi: 10.1109/TBME.2018.2842033. Epub 2018 May 30.
7
Pivoting neuromuscular control and proprioception in females and males.
Eur J Appl Physiol. 2015 Apr;115(4):775-84. doi: 10.1007/s00421-014-3062-z. Epub 2014 Nov 28.
8
Effects of pivoting neuromuscular training on pivoting control and proprioception.
Med Sci Sports Exerc. 2014 Jul;46(7):1400-9. doi: 10.1249/MSS.0000000000000249.
9
Real-time tracking of knee adduction moment in patients with knee osteoarthritis.
J Neurosci Methods. 2014 Jul 15;231:9-17. doi: 10.1016/j.jneumeth.2013.12.001. Epub 2013 Dec 19.

本文引用的文献

1
A pivoting elliptical training system for improving pivoting neuromuscular control and rehabilitating musculoskeletal injuries.
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):860-8. doi: 10.1109/TNSRE.2013.2273874.
2
Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis.
J Biomech. 2013 Jan 4;46(1):122-8. doi: 10.1016/j.jbiomech.2012.10.019. Epub 2012 Nov 10.
3
Offaxis neuromuscular training of knee injuries using an offaxis robotic elliptical trainer.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2081-4. doi: 10.1109/IEMBS.2011.6090386.
4
What strains the anterior cruciate ligament during a pivot landing?
Am J Sports Med. 2012 Mar;40(3):574-83. doi: 10.1177/0363546511432544. Epub 2012 Jan 5.
5
Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone.
Med Sci Sports Exerc. 2011 Aug;43(8):1484-91. doi: 10.1249/MSS.0b013e31820f8395.
6
Complexity and coherency: integrating information in the brain.
Trends Cogn Sci. 1998 Dec 1;2(12):474-84. doi: 10.1016/s1364-6613(98)01259-5.
7
A 'plane' explanation of anterior cruciate ligament injury mechanisms: a systematic review.
Sports Med. 2010 Sep 1;40(9):729-46. doi: 10.2165/11534950-000000000-00000.
8
Similarity of joint kinematics and muscle demands between elliptical training and walking: implications for practice.
Phys Ther. 2010 Feb;90(2):289-305. doi: 10.2522/ptj.20090033. Epub 2009 Dec 18.
9
Motor patterns during walking on a slippery walkway.
J Neurophysiol. 2010 Feb;103(2):746-60. doi: 10.1152/jn.00499.2009. Epub 2009 Dec 2.
10
The anterior cruciate ligament injury controversy: is "valgus collapse" a sex-specific mechanism?
Br J Sports Med. 2009 May;43(5):328-35. doi: 10.1136/bjsm.2009.059139. Epub 2009 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验