From the Coulter Department of Biomedical Engineering.
the Puget Sound Blood Research Institute; Department of Medicine, University of Washington, Seattle, Washington 98104.
J Biol Chem. 2013 Nov 8;288(45):32289-32301. doi: 10.1074/jbc.M113.504001. Epub 2013 Sep 23.
Binding of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF) initiates platelet adhesion to disrupted vascular surface under arterial blood flow. Flow exerts forces on the platelet that are transmitted to VWF-GPIbα bonds, which regulate their dissociation. Mutations in VWF and/or GPIbα may alter the mechanical regulation of platelet adhesion to cause hemostatic defects as found in patients with von Willebrand disease (VWD). Using a biomembrane force probe, we observed biphasic force-decelerated (catch) and force-accelerated (slip) dissociation of GPIbα from VWF. The VWF A1 domain that contains the N-terminal flanking sequence Gln(1238)-Glu(1260) (1238-A1) formed triphasic slip-catch-slip bonds with GPIbα. By comparison, using a short form of A1 that deletes this sequence (1261-A1) abolished the catch bond, destabilizing its binding to GPIbα at high forces. Importantly, shear-dependent platelet rolling velocities on these VWF ligands in a flow chamber system mirrored the force-dependent single-bond lifetimes. Adding the Gln(1238)-Glu(1260) peptide, which interacted with GPIbα and 1261-A1 but not 1238-A1, to whole blood decreased platelet attachment under shear stress. Soluble Gln(1238)-Glu(1260) reduced the lifetimes of GPIbα bonds with VWF and 1238-A1 but rescued the catch bond of GPIbα with 1261-A1. A type 2B VWD 1238-A1 mutation eliminated the catch bond by prolonging lifetimes at low forces, a type 2M VWD 1238-A1 mutation shifted the respective slip-catch and catch-slip transition points to higher forces, whereas a platelet type VWD GPIbα mutation enhanced the bond lifetime in the entire force regime. These data reveal the structural determinants of VWF activation by hemodynamic force of the circulation.
血小板糖蛋白 Ibα(GPIbα)与血管性血友病因子(VWF)的结合在动脉血流下启动血小板黏附于受损的血管表面。血流对血小板施加力,这些力传递至 VWF-GPIbα 键,从而调节其解离。VWF 和/或 GPIbα 的突变可能改变血小板黏附的机械调节,导致血管性血友病(VWD)患者出现止血缺陷。我们使用生物膜力探针观察到 GPIbα 从 VWF 上的双相力减速(捕获)和力加速(滑动)解离。包含 N 端侧翼序列 Gln(1238)-Glu(1260)的 VWF A1 结构域(1238-A1)与 GPIbα 形成三相滑动-捕获-滑动键。相比之下,使用删除此序列的 A1 短形式(1261-A1)消除了捕获键,使其在高力下与 GPIbα 的结合不稳定。重要的是,在流动室系统中,这些 VWF 配体上的剪切依赖性血小板滚动速度反映了力依赖性单键寿命。向全血中添加与 GPIbα 相互作用且与 1261-A1 但不与 1238-A1 相互作用的 Gln(1238)-Glu(1260) 肽,可降低剪切应力下的血小板附着。可溶性 Gln(1238)-Glu(1260) 缩短了 GPIbα 与 VWF 和 1238-A1 的键寿命,但挽救了 GPIbα 与 1261-A1 的捕获键。2B 型 VWD 1238-A1 突变通过延长低力时的寿命消除了捕获键,2M 型 VWD 1238-A1 突变将相应的滑动-捕获和捕获-滑动转换点转移到更高的力,而血小板 5 型 VWD GPIbα 突变增强了整个力范围内的键寿命。这些数据揭示了 VWF 被循环血流的血液动力激活的结构决定因素。