Suppr超能文献

E-选择素/配体解离的三相力依赖性控制着流动条件下的细胞滚动。

Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow.

机构信息

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Biophys J. 2010 Aug 9;99(4):1166-74. doi: 10.1016/j.bpj.2010.05.040.

Abstract

During inflammation, flowing leukocytes tether to and roll on vascular surfaces through the association and dissociation of selectin/ligand bonds. The interactions of P- and L- selectins with their respective ligands exhibit catch-slip bonds, such that increasing force initially prolongs and then shortens bond lifetimes. In addition, catch-slip bonds have been shown to govern L-selectin-mediated cell rolling. Using a flow chamber and biomembrane force probe, we show a triphasic force dependence of E-selectin/ligand dissociation that initially behaves as slip bonds, then transitions to catch bonds, and finally transitions again to slip bonds as the force increases. These transitions govern the velocities of neutrophils, HL-60 cells, and Colo-205 cells rolling on E-selectin, as evidenced by the fact that their velocities exhibited a triphasic force dependence that inversely matched the triphasic lifetime-force relationship. At low forces, slip bonds may also precede catch bonds for interactions of P- and L-selectin with their ligands.

摘要

在炎症过程中,流动的白细胞通过选择素/配体键的结合和解离,与血管表面黏附和滚动。P 选择素和 L 选择素与其各自配体的相互作用表现出“捕捉-滑动”键,即最初增加力会延长键的寿命,然后缩短键的寿命。此外,已证明“捕捉-滑动”键控制 L 选择素介导的细胞滚动。本研究使用流动室和生物膜力探针,显示 E-选择素/配体解离的三相力依赖性,最初表现为滑动键,然后过渡到捕捉键,随着力的增加,最后再次过渡到滑动键。这些转变控制着中性粒细胞、HL-60 细胞和 Colo-205 细胞在 E-选择素上滚动的速度,这一事实证明了它们的速度表现出三相力依赖性,与三相寿命-力关系相反。在低力下,P 选择素和 L 选择素与其配体的相互作用也可能先出现滑动键,然后再出现捕捉键。

相似文献

1
Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow.
Biophys J. 2010 Aug 9;99(4):1166-74. doi: 10.1016/j.bpj.2010.05.040.
2
Catch bonds govern adhesion through L-selectin at threshold shear.
J Cell Biol. 2004 Sep 13;166(6):913-23. doi: 10.1083/jcb.200403144.
3
Flow-Enhanced Stability of Rolling Adhesion through E-Selectin.
Biophys J. 2016 Aug 23;111(4):686-699. doi: 10.1016/j.bpj.2016.07.014.
4
Direct observation of catch bonds involving cell-adhesion molecules.
Nature. 2003 May 8;423(6936):190-3. doi: 10.1038/nature01605.
5
Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20716-21. doi: 10.1073/pnas.0808213105. Epub 2008 Dec 18.
6
Force-dependent bond dissociation govern rolling of HL-60 cells through E-selectin.
Exp Cell Res. 2012 Aug 15;318(14):1649-58. doi: 10.1016/j.yexcr.2012.05.018. Epub 2012 May 30.
7
Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan.
J Biol Chem. 2004 Jan 16;279(3):2291-8. doi: 10.1074/jbc.M310396200. Epub 2003 Oct 22.
8
Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow.
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10166-71. doi: 10.1073/pnas.171248098. Epub 2001 Jul 31.
9
Adhesive dynamics simulations of the shear threshold effect for leukocytes.
Biophys J. 2007 Feb 1;92(3):787-97. doi: 10.1529/biophysj.106.082321. Epub 2006 Nov 3.
10
Biomechanics of leukocyte rolling.
Biorheology. 2011;48(1):1-35. doi: 10.3233/BIR-2011-0579.

引用本文的文献

1
Engineering tunable catch bonds with DNA.
Nat Commun. 2024 Oct 12;15(1):8828. doi: 10.1038/s41467-024-52749-w.
2
Theory and Examples of Catch Bonds.
J Phys Chem B. 2024 May 2;128(17):4097-4110. doi: 10.1021/acs.jpcb.4c00468. Epub 2024 Apr 18.
3
Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2315866121. doi: 10.1073/pnas.2315866121. Epub 2024 Jan 31.
4
The Force-Dependent Mechanism of an Integrin α4β7-MAdCAM-1 Interaction.
Int J Mol Sci. 2023 Nov 7;24(22):16062. doi: 10.3390/ijms242216062.
5
Molecular mechanisms of catch bonds and their implications for platelet hemostasis.
Biophys Rev. 2023 Sep 26;15(5):1233-1256. doi: 10.1007/s12551-023-01144-8. eCollection 2023 Oct.
6
Biomembrane force probe (BFP): Design, advancements, and recent applications to live-cell mechanobiology.
Exploration (Beijing). 2023 Jul 11;3(4):20230004. doi: 10.1002/EXP.20230004. eCollection 2023 Aug.
7
What's the Catch? The Significance of Catch Bonds in T Cell Activation.
J Immunol. 2023 Aug 1;211(3):333-342. doi: 10.4049/jimmunol.2300141.
8
Receptor-Ligand Binding: Effect of Mechanical Factors.
Int J Mol Sci. 2023 May 21;24(10):9062. doi: 10.3390/ijms24109062.
9
Catch bond models may explain how force amplifies TCR signaling and antigen discrimination.
Nat Commun. 2023 May 5;14(1):2616. doi: 10.1038/s41467-023-38267-1.
10
Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System.
Front Immunol. 2021 Dec 23;12:767175. doi: 10.3389/fimmu.2021.767175. eCollection 2021.

本文引用的文献

2
Theoretical aspects of the biological catch bond.
Acc Chem Res. 2009 Jun 16;42(6):693-703. doi: 10.1021/ar800202z.
4
Mechanisms for flow-enhanced cell adhesion.
Ann Biomed Eng. 2008 Apr;36(4):604-21. doi: 10.1007/s10439-008-9464-5. Epub 2008 Feb 26.
5
Monitoring receptor-ligand interactions between surfaces by thermal fluctuations.
Biophys J. 2008 Jan 15;94(2):694-701. doi: 10.1529/biophysj.107.117895. Epub 2007 Sep 21.
6
A structure-based sliding-rebinding mechanism for catch bonds.
Biophys J. 2007 Mar 1;92(5):1471-85. doi: 10.1529/biophysj.106.097048. Epub 2006 Dec 1.
7
Flow-enhanced adhesion regulated by a selectin interdomain hinge.
J Cell Biol. 2006 Sep 25;174(7):1107-17. doi: 10.1083/jcb.200606056.
8
Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton.
Biophys J. 2005 Mar;88(3):2288-98. doi: 10.1529/biophysj.104.051698. Epub 2005 Jan 14.
9
Catch bonds govern adhesion through L-selectin at threshold shear.
J Cell Biol. 2004 Sep 13;166(6):913-23. doi: 10.1083/jcb.200403144.
10
Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13519-24. doi: 10.1073/pnas.0403608101. Epub 2004 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验