Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, CH-3012 Bern, Switzerland.
J Phys Chem A. 2013 Oct 17;117(41):10702-13. doi: 10.1021/jp4069043. Epub 2013 Oct 7.
The vibronic spectra of strong charge-transfer complexes are often congested or diffuse and therefore difficult to analyze. We present the spectra of the π-stacked complex perylene trans-1,2-dichloroethene, which is in the limit of weak charge transfer, the electronic excitation remaining largely confined to the perylene moiety. The complex is formed in a supersonic jet, and its S0 ↔ S1 spectra are investigated by two-color resonant two-photon ionization (2C-R2PI) and fluorescence spectroscopies. Under optimized conditions, vibrationally cold (T(vib) ≈ 9 K) and well resolved spectra are obtained. These are dominated by vibrational progressions in the “hindered-rotation” Rc intermolecular vibration with very low frequencies of 11 (S0) and 13 cm(–1) (S1). The intermolecular Tz stretch and the Ra and Rb bend vibrations are also observed. The normally symmetry-forbidden intramolecular 1a(u) “twisting” vibration of perylene also appears, showing that the π- stacking interaction deforms the perylene moiety, lowering its local symmetry from D2h to D2. We calculate the structure and vibrations of this complex using six different density functional theory (DFT) methods (CAM-B3LYP, BH&HLYP, B97-D3, ωB97X-D, M06, and M06-2X) and compare the results to those calculated by correlated wave function methods (SCS-MP2 and SCS-CC2). The structures and vibrational frequencies predicted with the CAM-B3LYP and BH&HLYP methods disagree with the other calculations and with experiment. The other four DFT and the ab initio methods all predict a π-stacked “centered” structure with nearly coplanar perylene and dichloroethene moieties and intermolecular binding energies of D(e) = −20.8 to −26.1 kJ/mol. The 000 band of the S0 → S1 transition is red-shifted by δν = −301 cm(–1) relative to that of perylene, implying that the D(e) increases by 3.6 kJ/mol or 15% upon electronic excitation. The intermolecular vibrational frequencies are assigned to the calculated Rc, Tz, Ra, and Rb vibrations by comparing to the observed/calculated frequencies and S0 ↔ S1 Franck–Condon factors. Of the three TD-DFT methods tested, the hybrid-meta-GGA functional M06-2X shows the best agreement with the experimental electronic transition energies, spectral shifts, and vibronic spectra, closely followed by the ωB97X-D functional, while the M06 functional gives inferior results.
强电荷转移配合物的振子光谱通常是密集或弥散的,因此难以分析。我们呈现了π-堆积配合物苝反式-1,2-二氯乙烯的光谱,该配合物处于弱电荷转移的极限,电子激发仍然主要局限于苝部分。该配合物在超音速射流中形成,并通过双色共振双光子电离(2C-R2PI)和荧光光谱法研究其 S0↔S1 光谱。在优化条件下,获得了振动低温(T(vib)≈9 K)和良好分辨的光谱。这些光谱主要由“受阻旋转”Rc 分子间振动的振动进展主导,其频率非常低,分别为 11(S0)和 13 cm(-1)(S1)。还观察到分子间 Tz 伸展和 Ra 和 Rb 弯曲振动。通常对称性禁止的分子内 1a(u)“扭曲”振动也出现了,表明π-堆积相互作用使苝部分变形,降低了其局部对称性从 D2h 到 D2。我们使用六种不同的密度泛函理论(DFT)方法(CAM-B3LYP、BH&HLYP、B97-D3、ωB97X-D、M06 和 M06-2X)计算该配合物的结构和振动,并将结果与相关波函数方法(SCS-MP2 和 SCS-CC2)计算的结果进行比较。CAM-B3LYP 和 BH&HLYP 方法预测的结构和振动频率与其他计算和实验结果不一致。其他四个 DFT 和从头算方法都预测了一个具有几乎共面苝和二氯乙烯部分的π-堆积“中心”结构,以及分子间结合能 D(e)=-20.8 至-26.1 kJ/mol。S0↔S1 跃迁的 000 带相对于苝的红移为 δν=-301 cm(-1),这意味着电子激发使 D(e)增加 3.6 kJ/mol 或 15%。通过与观察/计算频率和 S0↔S1 Franck-Condon 因子比较,将分子间振动频率分配给计算的 Rc、Tz、Ra 和 Rb 振动。在测试的三种 TD-DFT 方法中,混合泛函 M06-2X 与实验电子跃迁能量、光谱位移和振子光谱的吻合度最好,紧随其后的是 ωB97X-D 泛函,而 M06 泛函的结果则较差。