Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States.
J Phys Chem A. 2013 Dec 19;117(50):13832-42. doi: 10.1021/jp408336n. Epub 2013 Oct 17.
We present 193 nm in situ photochemical studies of NH3 isolated in solid parahydrogen (pH2) at 1.8 K using Fourier Transform Infrared (FTIR) spectroscopy. By recording FTIR spectra during and after irradiation we are able to identify and assign a number of rovibrational transitions to ortho-NH2(X(2)B1) and NH(X(3)Σ(-)). Spectroscopic analysis shows that these two radical species rotate freely in solid pH2 and that effects of the unpaired electron spin remain essentially unchanged from the gas phase. We provide detailed mechanistic studies that show the nascent ortho-NH2 photoproduct is rapidly cooled within the pH2 matrix to the ground vibrational and rotational state before (1) subsequent photodissociation or (2) tunneling-driven reaction (k(tun) = 1.88(17) min(-1)) with the pH2 host to produce ortho-NH3 in a defect site. Once the ortho-NH3 is produced in this defect site it slowly converts (k(conv) = 7.72(51) × 10(-3) min(-1)) back to a single substitution site even at 1.8 K. We demonstrate the in situ photolysis of NH3 can be utilized to generate NH doped pH2 solids that are relatively stable at low temperature. However, the ortho-NH2 + pH2 → ortho-NH3 + H back reaction substantially limits the sequential two-photon conversion of NH3 to NH. These studies also reveal that extended photolysis of the NH3/pH2 system results in the generation of high concentrations of orthohydrogen that must result from repeated cycles of photodissociation and NH2 back reaction within the pH2 host.
我们在 1.8 K 下使用傅里叶变换红外(FTIR)光谱对固态仲氢(pH2)中分离的 NH3 进行了 193nm 原位光化学研究。通过在辐照过程中和辐照后记录 FTIR 光谱,我们能够识别并分配给一些转动振动跃迁到正 NH2(X(2)B1)和 NH(X(3)Σ(-))。光谱分析表明,这两种自由基在固态 pH2 中自由旋转,并且未配对电子自旋的影响基本保持不变,与气相相同。我们提供了详细的机制研究,表明新生的正 NH2 光产物在 pH2 基质中迅速冷却到基态振动和转动状态,然后(1)随后光解或(2)隧穿驱动反应(k(tun) = 1.88(17) min(-1))与 pH2 宿主反应,在缺陷位置产生正 NH3。一旦在这个缺陷位置产生正 NH3,它就会缓慢转化(k(conv) = 7.72(51) × 10(-3) min(-1))回到单个取代位置,即使在 1.8 K 也是如此。我们证明了 NH3 的原位光解可以用于生成在低温下相对稳定的 NH 掺杂 pH2 固体。然而,正 NH2 + pH2 → 正 NH3 + H 后反应极大地限制了 NH3 到 NH 的连续两次光转化。这些研究还表明,NH3/pH2 体系的扩展光解导致正氢浓度的升高,这必须是在 pH2 宿主内重复光解和 NH2 后反应循环的结果。