Suppr超能文献

临床试验中预测性生物标志物的样本量和阈值估计。

Sample size and threshold estimation for clinical trials with predictive biomarkers.

机构信息

Genentech, South San Francisco, CA 94080, USA.

出版信息

Contemp Clin Trials. 2013 Nov;36(2):664-72. doi: 10.1016/j.cct.2013.09.005. Epub 2013 Sep 21.

Abstract

With the increasing availability of newly discovered biomarkers personalized drug development is becoming more commonplace. Unless evidence of the dependence of clinical benefit on biomarker classification is a priori unequivocal, personalized drug development needs to jointly investigate treatments and biomarkers in clinical trials. Motivated by the development of contemporary cancer treatments, we propose targeting three main questions sequentially in order to determine (1) whether a drug is efficacious, (2) whether a biomarker can personalize treatment, and (3) how to define personalization. For time-to-event data satisfying the Cox proportional hazards model, we show that (1) and (2) may not directly involve the variance of an interaction term but of a contrast with smaller variance. An asymptotically exact covariance matrix for the parameter vector in the CPH model is derived to construct sample size formulae and an inference approach for thresholds of continuous biomarkers. The covariance matrix also reveals strategies for greater efficiency in trial design, for example, when the biomarker is binary or does not modulate the effect of treatment in the control arm. We motivate our approach by studying the outcome of a contemporary cancer study.

摘要

随着新发现的生物标志物的日益普及,个性化药物开发变得越来越普遍。除非临床获益依赖于生物标志物分类的证据是先验明确的,否则个性化药物开发需要在临床试验中联合研究治疗方法和生物标志物。受当代癌症治疗方法的发展的启发,我们建议依次针对三个主要问题进行研究,以确定(1)药物是否有效,(2)生物标志物是否可以实现个性化治疗,以及(3)如何定义个性化治疗。对于满足 Cox 比例风险模型的生存数据,我们表明(1)和(2)可能不直接涉及交互项的方差,而是涉及方差较小的对比项。我们推导出了 CPH 模型中参数向量的渐近精确协方差矩阵,以构建用于连续生物标志物阈值的样本量公式和推理方法。协方差矩阵还揭示了试验设计中提高效率的策略,例如,当生物标志物为二进制或不会调节对照臂中治疗效果时。我们通过研究当代癌症研究的结果来证明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验