State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong, P. R. China.
Nanoscale. 2013 Nov 21;5(22):11132-8. doi: 10.1039/c3nr03558a. Epub 2013 Sep 24.
We demonstrate by molecular dynamic (MD) simulations that patterned partially hydrogenated graphene (C4H) can self-assemble at room temperature. The main driving force of the self-assembly of C4H is due to the one-sided distribution of hydrogen and the corresponding asymmetric orientation of sp(3) bonding, there exists strong electrostatic repulsion between the relatively close H atoms. The simulations show that C4H can self-assemble into various carbon nanoscroll (CNS) structures, this is mainly controlled by its geometry (size and aspect ratio). And the carbon nanotube (CNT) is a good candidate to activate and guide C4H to form CNS, whose core size can be controlled. Meanwhile, a novel CNT/C4H core/shell composite nanostructure is also formed. The theoretical results shed important light on a feasible approach to fabricate high-quality CNS and other novel nanostructures including core/shell structures, which hold great potential applications in optics, optoelectronic devices, hydrogen storage, sensors, and energy storage in supercapacitors or batteries.
我们通过分子动力学(MD)模拟证明,图案化的部分氢化石墨烯(C4H)可以在室温下自组装。C4H 自组装的主要驱动力是由于氢的单侧分布和 sp(3)键的相应不对称取向,相对接近的 H 原子之间存在强烈的静电排斥。模拟表明,C4H 可以自组装成各种碳纳米螺旋(CNS)结构,这主要由其几何形状(大小和纵横比)控制。并且碳纳米管(CNT)是激活和引导 C4H 形成 CNS 的良好候选者,其核心尺寸可以控制。同时,还形成了一种新型的 CNT/C4H 核/壳复合纳米结构。理论结果为制造高质量 CNS 和其他新型纳米结构(包括核/壳结构)提供了一种可行的方法,这些结构在光学、光电设备、储氢、传感器以及超级电容器或电池中的能量存储方面具有巨大的应用潜力。