Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (B.O.B., Z.N., S.F.A.A., D.L.Y., M.J.S., A.A.V.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Ghent, Belgium (I.V.K., A.V.P.).
Circulation. 2013 Dec 24;128(25):2732-44. doi: 10.1161/CIRCULATIONAHA.113.005019. Epub 2013 Sep 24.
Atrial fibrillation is the most common cardiac arrhythmia. Ventricular proarrhythmia hinders pharmacological atrial fibrillation treatment. Modulation of atrium-specific Kir3.x channels, which generate a constitutively active current (I(K,ACh-c)) after atrial remodeling, might circumvent this problem. However, it is unknown whether and how I(K,ACh-c) contributes to atrial fibrillation induction, dynamics, and termination. Therefore, we investigated the effects of I(K,ACh-c) blockade and Kir3.x downregulation on atrial fibrillation.
Neonatal rat atrial cardiomyocyte cultures and intact atria were burst paced to induce reentry. To study the effects of Kir3.x on action potential characteristics and propagation patterns, cultures were treated with tertiapin or transduced with lentiviral vectors encoding Kcnj3- or Kcnj5-specific shRNAs. Kir3.1 and Kir3.4 were expressed in atrial but not in ventricular cardiomyocyte cultures. Tertiapin prolonged action potential duration (APD; 54.7±24.0 to 128.8±16.9 milliseconds; P<0.0001) in atrial cultures during reentry, indicating the presence of I(K,ACh-c). Furthermore, tertiapin decreased rotor frequency (14.4±7.4 to 6.6±2.0 Hz; P<0.05) and complexity (6.6±7.7 to 0.6±0.8 phase singularities; P<0.0001). Knockdown of Kcnj3 or Kcnj5 gave similar results. Blockade of I(K,ACh-c) prevented/terminated reentry by prolonging APD and changing APD and conduction velocity restitution slopes, thereby altering the probability of APD alternans and rotor destabilization. Whole-heart mapping experiments confirmed key findings (e.g., >50% reduction in atrial fibrillation inducibility after I(K,ACh-c) blockade).
Atrium-specific Kir3.x controls the induction, dynamics, and termination of fibrillation by modulating APD and APD/conduction velocity restitution slopes in atrial tissue with I(K,ACh-c). This study provides new molecular and mechanistic insights into atrial tachyarrhythmias and identifies Kir3.x as a promising atrium-specific target for antiarrhythmic strategies.
心房颤动是最常见的心律失常。心室促心律失常会阻碍抗心律失常药物治疗心房颤动。调节在心房重构后产生持续激活电流(I(K,Ach-c)的心房特异性 Kir3.x 通道,可能会规避这个问题。然而,目前尚不清楚 I(K,Ach-c)是否以及如何参与心房颤动的诱导、动态变化和终止。因此,我们研究了 I(K,Ach-c)阻断和 Kir3.x 下调对心房颤动的影响。
新生大鼠心房肌细胞培养物和完整心房被爆发式起搏以诱导折返。为了研究 Kir3.x 对动作电位特征和传播模式的影响,培养物用 tertiapin 处理或用编码 Kcnj3 或 Kcnj5 特异性 shRNA 的慢病毒载体转导。Kir3.1 和 Kir3.4 在心房肌细胞培养物中表达,但不在心室肌细胞培养物中表达。Tertiapin 在心房培养物的折返期间延长动作电位时程(APD;54.7±24.0 至 128.8±16.9 毫秒;P<0.0001),表明存在 I(K,Ach-c)。此外,tertiapin 降低了转子频率(14.4±7.4 至 6.6±2.0 Hz;P<0.05)和复杂性(6.6±7.7 至 0.6±0.8 相位奇点;P<0.0001)。敲低 Kcnj3 或 Kcnj5 也得到了类似的结果。I(K,Ach-c)阻断通过延长 APD 并改变 APD 和传导速度恢复斜率来预防/终止折返,从而改变 APD 交替和转子失稳的概率。全心映射实验证实了关键发现(例如,I(K,Ach-c)阻断后心房颤动诱导率降低>50%)。
心房特异性 Kir3.x 通过调节心房组织中的 APD 和 APD/传导速度恢复斜率来控制房颤的诱导、动态变化和终止,通过 I(K,Ach-c)来控制房颤的诱导、动态变化和终止。本研究为心房性心动过速提供了新的分子和机制见解,并确定 Kir3.x 作为一种有前途的抗心律失常策略的心房特异性靶点。