School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States.
Biomacromolecules. 2013 Oct 14;14(10):3370-5. doi: 10.1021/bm4008293. Epub 2013 Oct 3.
High aspect ratio nanotubular assemblies can be effective fillers in mechanically reinforced composite materials. However, most existing nanotubes used for structural purposes are limited in their range of mechanical, chemical, and biological properties. We demonstrate an alternative approach to mechanical reinforcement of polymeric systems by incorporating synthetic D,L-cyclic peptide nanotube bundles as a structural filler in electrospun poly D-, L-lactic acid fibers. The nanotube bundles self-assemble through dynamic hydrogen bonding from synthetic cyclic peptides to yield structures whose dimensions can be altered based on processing conditions, and can be up to hundreds of micrometers long and several hundred nanometers wide. With 8 wt % peptide loading, the composite fibers are >5-fold stiffer than fibers composed of the polymer alone, according to atomic force microscopy-based indentation experiments. This represents a new use for self-assembling cyclic peptides as a load-bearing component in biodegradable composite materials.
高纵横比纳米管状组件在机械增强复合材料中可以作为有效的填充材料。然而,大多数现有的用于结构目的的纳米管在其机械、化学和生物性能方面受到限制。我们展示了一种替代方法来增强聚合物系统的机械性能,即将合成的 D,L-环状肽纳米管束作为结构填充物纳入电纺聚 D,L-乳酸纤维中。纳米管束通过合成环状肽的动态氢键自组装,形成可以根据处理条件改变尺寸的结构,并且可以长达数百微米和数百纳米宽。根据原子力显微镜压痕实验,在 8wt%的肽负载下,复合纤维比由聚合物单独组成的纤维硬 5 倍以上。这代表了自组装环状肽作为可生物降解复合材料中承重组件的新用途。