College of Material Science and Engineering and Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
Nanoscale. 2013 Nov 21;5(22):11087-93. doi: 10.1039/c3nr03289b. Epub 2013 Sep 26.
Herein, we demonstrate a novel and simple two-step process for preparing LiCoO2 nanocrystals by using a Prussian blue analogue Co3[Co(CN)6]2 as a precursor. The resultant LiCoO2 nanoparticles possess single crystalline nature and good uniformity with an average size of ca. 360 nm. The unique nanostructure of LiCoO2 provides relatively shorter Li(+) diffusion pathways, thus facilitating the fast kinetics of electrochemical reactions. As a consequence, high reversible capacity, excellent cycling stability and rate capability are achieved with these nanocrystals as cathodes for lithium storage. The LiCoO2 nanocrystals deliver specific capacities of 154.5, 135.8, 119, and 100.3 mA h g(-1) at 0.2, 0.4, 1, and 2 C rates, respectively. Even at a high current density of 4 C, a reversible capacity of 87 mA h g(-1) could be maintained. Importantly, a capacity retention of 83.4% after 100 cycles is achieved at a constant discharge rate of 1 C. Furthermore, owing to facile control of the morphology and size of Prussian blue analogues by varying process parameters, as well as the tailored design of multi-component metal-cyanide hybrid coordination polymers, with which we have successfully prepared porous Fe2O3@NixCo3-xO4 nanocubes, one of the potential anode materials for lithium-ion batteries, such a simple and scalable approach could also be applied to the synthesis of other nanomaterials for energy storage devices.
在此,我们展示了一种新颖而简单的两步法,通过使用普鲁士蓝类似物 Co3[Co(CN)6]2 作为前驱体制备 LiCoO2 纳米晶。所得 LiCoO2 纳米颗粒具有单晶性质和良好的均匀性,平均尺寸约为 360nm。LiCoO2 的独特纳米结构提供了相对较短的 Li(+)扩散途径,从而促进了电化学反应的快速动力学。因此,这些纳米晶作为锂离子存储的正极,具有高可逆容量、优异的循环稳定性和倍率性能。LiCoO2 纳米晶作为锂离子电池的正极材料,在 0.2、0.4、1 和 2 C 倍率下的比容量分别为 154.5、135.8、119 和 100.3 mA h g(-1)。即使在 4 C 的高电流密度下,也可以保持 87 mA h g(-1)的可逆容量。重要的是,在 1 C 的恒定放电速率下,经过 100 次循环后,容量保持率达到 83.4%。此外,由于可以通过改变工艺参数来轻松控制普鲁士蓝类似物的形态和尺寸,以及可以通过设计多组分金属氰化物混合配位聚合物来定制形貌和尺寸,我们已经成功制备了多孔 Fe2O3@NixCo3-xO4 纳米立方体,这是一种潜在的锂离子电池负极材料,因此,这种简单且可扩展的方法也可以应用于其他储能器件的纳米材料的合成。