Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27106, United States.
J Phys Chem B. 2013 Oct 31;117(43):13451-6. doi: 10.1021/jp4061158. Epub 2013 Oct 16.
With the advancement of nanotoxicology and nanomedicine, it has been realized that nanoparticles (NPs) interact readily with biomolecular species and other chemical and organic matter to result in biocorona formation. The field of the environmental health and safety of nanotechnology, or NanoEHS, is currently lacking significant molecular-resolution data, and we set out to characterize biocorona formation through electron microscopy imaging and circular dichroism spectroscopy that inspired a novel approach for molecular dynamics (MD) simulations of protein-NP interactions. In our present study, we developed a novel GPU-optimized coarse-grained MD simulation methodology for the study of biocorona formation, a first in the field. Specifically, we performed MD simulations of a spherical, negatively charged citrate-covered silver nanoparticle (AgNP) interacting with 15 apolipoproteins. At low ion concentrations, we observed the formation of an AgNP-apolipoprotein biocorona. Consistent with the circular dichroism (CD) spectra, we observed a decrease in α-helices coupled with an increase in β-sheets in apolipoprotein upon biocorona formation.
随着纳米毒理学和纳米医学的发展,人们已经意识到纳米颗粒(NPs)很容易与生物分子物种以及其他化学和有机物质相互作用,从而导致形成生物冠。目前,纳米技术的环境健康和安全领域(NanoEHS)缺乏重要的分子分辨率数据,我们着手通过电子显微镜成像和圆二色性光谱来表征生物冠的形成,这激发了一种用于蛋白质-NP 相互作用的分子动力学(MD)模拟的新方法。在本研究中,我们开发了一种新的 GPU 优化的粗粒 MD 模拟方法来研究生物冠的形成,这在该领域尚属首次。具体来说,我们对一个球形的、带负电荷的柠檬酸覆盖的银纳米颗粒(AgNP)与 15 种载脂蛋白进行了 MD 模拟。在低离子浓度下,我们观察到 AgNP-载脂蛋白生物冠的形成。与圆二色性(CD)光谱一致,我们观察到在生物冠形成时,载脂蛋白中的α-螺旋减少,β-折叠增加。