Suppr超能文献

意想不到的后果?生物和晶体学蛋白质-蛋白质界面处的水分子。

Unintended consequences? Water molecules at biological and crystallographic protein-protein interfaces.

机构信息

Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298-0540, USA.

出版信息

Comput Biol Chem. 2013 Dec;47:126-41. doi: 10.1016/j.compbiolchem.2013.08.009. Epub 2013 Sep 5.

Abstract

The importance of protein-protein interactions (PPIs) is becoming increasingly appreciated, as these interactions lie at the core of virtually every biological process. Small molecule modulators that target PPIs are under exploration as new therapies. One of the greatest obstacles faced in crystallographically determining the 3D structures of proteins is coaxing the proteins to form "artificial" PPIs that lead to uniform crystals suitable for X-ray diffraction. This work compares interactions formed naturally, i.e., "biological", with those artificially formed under crystallization conditions or "non-biological". In particular, a detailed analysis of water molecules at the interfaces of high-resolution (≤2.30 Å) X-ray crystal structures of protein-protein complexes, where 140 are biological protein-protein complex structures and 112 include non-biological protein-protein interfaces, was carried out using modeling tools based on the HINT forcefield. Surprisingly few and relatively subtle differences were observed between the two types of interfaces: (i) non-biological interfaces are more polar than biological interfaces, yet there is better organized hydrogen bonding at the latter; (ii) biological associations rely more on water-mediated interactions with backbone atoms compared to non-biological associations; (iii) aromatic/planar residues play a larger role in biological associations with respect to water, and (iv) Lys has a particularly large role at non-biological interfaces. A support vector machines (SVMs) classifier using descriptors from this study was devised that was able to correctly classify 84% of the two interface types.

摘要

蛋白质-蛋白质相互作用(PPIs)的重要性日益受到重视,因为这些相互作用是几乎所有生物过程的核心。作为新疗法,靶向 PPIs 的小分子调节剂正在被探索。在晶体学上确定蛋白质的 3D 结构时,最大的障碍之一是诱导蛋白质形成导致适合 X 射线衍射的均匀晶体的“人工”PPIs。这项工作比较了自然形成的相互作用,即“生物”相互作用,与在结晶条件下人工形成的相互作用,即“非生物”相互作用。特别是,使用基于 HINT 力场的建模工具对高分辨率(≤2.30 Å)蛋白质-蛋白质复合物 X 射线晶体结构(其中 140 个是生物蛋白质-蛋白质复合物结构,112 个包含非生物蛋白质-蛋白质界面)的界面处的水分子进行了详细分析。令人惊讶的是,两种类型的界面之间观察到的差异很少且相对微妙:(i)非生物界面比生物界面更具极性,但后者的氢键组织更好;(ii)与非生物相互作用相比,生物相互作用更多地依赖于与骨架原子的水介导相互作用;(iii)与水相比,芳香族/平面残基在生物相互作用中起更大的作用;(iv)Lys 在非生物界面中起着特别大的作用。设计了一种支持向量机(SVM)分类器,使用本研究中的描述符,可以正确分类 84%的两种界面类型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验